9 resultados para agarose
Resumo:
Background: It is unclear why some patients develop a chronic nonproductive cough. Angiotensin-converting enzyme (ACE) inactivates tussive peptides in the airways such as bradykinin and tachykinins. An insertion/deletion polymorphism in the ACE gene accounts for variation in ACE levels, and patients with the II genotype have lowest serum ACE levels compared with ID and DD genotypes. We hypothesized that the II genotype would be associated with increased risk of developing a chronic cough.
Materials and methods: We recruited 47 patients (33 women), referred for evaluation of cough (median cough duration, 24 months; range, 2 to 240 months). Cough patients were evaluated using a comprehensive diagnostic protocol, and cough reflex sensitivity was measured using a capsaicin inhalation challenge. ACE genotyping was performed on DNA samples from patients using the polymerase chain reaction followed by agarose gel electrophoresis. ACE genotypes in patients with chronic cough were compared with those in 199 healthy control subjects. Serum ACE levels were determined using a colorimetric assay.
Results: Genotype frequencies for the ACE gene were similar between patients and control subjects. There was no correlation between capsaicin sensitivity and ACE genotypes or serum ACE levels.
Conclusion: Susceptibility to develop chronic cough is not associated with ACE genotype.
Resumo:
The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.
Resumo:
The comet assay is a technique used to quantify DNA damage and repair at a cellular level. In the assay, cells are embedded in agarose and the cellular content is stripped away leaving only the DNA trapped in an agarose cavity which can then be electrophoresed. The damaged DNA can enter the agarose and migrate while the undamaged DNA cannot and is retained. DNA damage is measured as the proportion of the migratory ‘tail’ DNA compared to the total DNA in the cell. The fundamental basis of these arbitrary values is obtained in the comet acquisition phase using fluorescence microscopy with a stoichiometric stain in tandem with image analysis software. Current methods deployed in such an acquisition are expected to be both objectively and randomly obtained. In this paper we examine the ‘randomness’ of the acquisition phase and suggest an alternative method that offers both objective and unbiased comet selection. In order to achieve this, we have adopted a survey sampling approach widely used in stereology, which offers a method of systematic random sampling (SRS). This is desirable as it offers an impartial and reproducible method of comet analysis that can be used both manually or automated. By making use of an unbiased sampling frame and using microscope verniers, we are able to increase the precision of estimates of DNA damage. Results obtained from a multiple-user pooled variation experiment showed that the SRS technique attained a lower variability than that of the traditional approach. The analysis of a single user with repetition experiment showed greater individual variances while not being detrimental to overall averages. This would suggest that the SRS method offers a better reflection of DNA damage for a given slide and also offers better user reproducibility.
Resumo:
The single-cell gel electrophoresis technique or comet assay is widely regarded as a quick and reliable method of analysing DNA damage in individual cells. It has a proven track record from the fields of biomonitoring to nutritional studies. The assay operates by subjecting cells that are fixed in agarose to high salt and detergent lysis, thus removing all the cellular content except the DNA. By relaxing the DNA in an alkaline buffer, strands containing breaks are released from supercoiling. Upon electrophoresis, these strands are pulled out into the agarose, forming a tail which, when stained with a fluorescent dye, can be analysed by fluorescence microscopy. The intensity of this tail reflects the amount of DNA damage sustained. Despite being such an established and widely used assay, there are still many aspects of the comet assay which are not fully understood. The present review looks at how the comet assay is being used, and highlights some of its limitations. The protocol itself varies among laboratories, so results from similar studies may vary. Given such discrepancies, it would be attractive to break the assay into components to generate a mathematical model to investigate specific parameters.
Resumo:
Background Two novel assays quantifying Epithelial to Mesenchymal Transition (EMT) were compared to traditional motility and migration assays. TGF-ß1 treatment of AY-27 rat bladder cancer cells acted as a model of EMT in tumourigenesis. Methods AY-27 rat bladder cancer cells incubated with 3ng/ml TGF-ß1 or control media for 24 or 48h were assessed using novel and traditional assays. The Spindle Index, a novel measure of spindle phenotype, was derived from the ratio of maximum length to maximum width of cells. The area covered by cells which migrated from a fixed coverslip towards supplemented agarose was measured in a novel chemoattractant assay. Motility, migration and immunoreactivity for E-cadherin, Vimentin and cytokeratin were assessed. Results TGF-ß1 treated cells had increased “spindle” phenotype together with decreased E-cadherin, decreased Cytokeratin-18 and increased Vimentin immunoreactivity. After 48h, the mean Spindle Index of TGF-ß1 treated cells was significantly higher than Mock (p=0.02 Bonferroni test) and there were significant differences in migration across treatment groups measured using the novel chemoattractant assay (p = 0.02, Chi-Square). TGF-ß1 significantly increased matrigel invasion. Conclusion The Spindle Index and the novel chemoattractant assay are valuable adjunctive assays for objective characterization of EMT changes during tumourigenesis.
Resumo:
All ionizing radiations deposit energy stochastically along their tracks. The resulting distribution of energies deposited in a small target such as the DNA helix leads to a corresponding spectrum in the severity of damage produced. So far, most information about the probable spectra of DNA lesion complexity has come from Monte Carlo studies which endeavour to model the relationship between the energy deposited in DNA and the damage induced. The aim of this paper is to establish methods of determining this relationship by irradiating pBR322 plasmid DNA using low energy electrons with energies comparable with the minimum energy thought to produce critical damage. The technique of agarose gel electrophoresis has been used to ascertain the fraction of DNA single- and double-strand breaks induced by monoenergetic electrons with energies as low as 25 eV. Our data show that the threshold electron energy for induction of single-strand breaks is
Resumo:
Metabolic alterations have been identified as a frequent event in cancer. This is often associated with increased flux through glycolysis, and also a secondary pathway to glycolysis, hexosamine biosynthetic pathway (HBP). HBP provides substrate for N-linked glycosylation, which occurs in the endoplasmic reticulum and the Golgi apparatus. N-linked glycosylation supports protein folding and correct sorting of proteins to plasma membrane and secretion. This process generates complex glycoforms, which can be recognized by other proteins and glycosylation of receptor tyrosine kinases (RTK) can also regulate their plasma-membrane retention time. Of special interest for experimental biologists, plants produce proteins, termed lectins, which bind with high specificity to glyco-conjugates. For the purposes of molecular biology, plant lectins can be conjugated to different moieties, such as agarose beads, which enable precipitation of specifically glycosylated proteins. In this chapter, we describe in detail how to perform pull-down experiments with commercially available lectins to identify changes in the glycosylation of RTKs.
Resumo:
Introduction: In addition to their afferent role in detection and signalling noxious stimuli, neuropeptide-containing sensory nerves may initiate and maintain chronic inflammation in diseases such as periodontitis by an efferent process known as neurogenic inflammation. Neuropeptides are susceptible to cleavage by peptidases, and therefore, the exact location and level of expression of peptidases are major determinants of neuropeptide action. Previous studies in our laboratory showed that enzyme components of gingival crevicular fluid (GCF) from periodontitis sites selectively inactivated the neuropeptide calcitonin gene-related peptide (CGRP), known to have a role in inhibiting osteoclastic bone resorption. Objectives: The aim of this study was to design and synthesise a specific inhibitor to prevent the degradation of CGRP by components of GCF. Methods: A hydroxamate-based inhibitor with a biotinylated tag was designed to ensure selectivity for CGRP and ease of use for future purification strategies. The biotinylated peptide hydroxamate contained the P1-P4 amino acid sequence of the potential CGRP cleavage site and was synthesised by solid-phase methods using standard Fmoc chemistry. Inhibition of CGRP metabolism by GCF was determined by MALDI-mass spectrometry (MALDI-MS) using pooled GCF samples from periodontitis patients as a crude source of the CGRP-degrading enzyme. Results: MALDI-MS analysis of CGRP degradation showed almost complete inhibition in the presence of the biotinylated inhibitor. Our results showed that the rate-limiting step in the cleavage of CGRP is endopeptidase cleavage, followed by carboxypeptidase attack. Conclusion: This study demonstrates that the enzyme component of GCF responsible for the degradation of CGRP can be inhibited by a biotinylated hydroxamate modelled on a potential endopeptidase cleavage site. The biotin tag on the inhibitor will facilitate our future purification of the CGRP-cleavage enzyme using a streptavidin-agarose column.
Resumo:
BACKGROUND AND OBJECTIVE: The main difficulty of PCR-based clonality studies for B-cell lymphoproliferative disorders (B-LPD) is discrimination between monoclonal and polyclonal PCR products, especially when there is a high background of polyclonal B cells in the tumor sample. Actually, PCR-based methods for clonality assessment require additional analysis of the PCR products in order to discern between monoclonal and polyclonal samples. Heteroduplex analysis represents an attractive approach since it is easy to perform and avoids the use of radioactive substrates or expensive equipment. DESIGN AND METHODS: We studied the sensitivity and specificity of heteroduplex PCR analysis for monoclonal detection in samples from 90 B-cell non Hodgkin's lymphoma (B-NHL) patients and in 28 individuals without neoplastic B-cell disorders (negative controls). Furthermore, in 42 B-NHL and in the same 28 negative controls, we compared heteroduplex analysis vs the classical PCR technique. We also compared ethidium bromide (EtBr) vs. silver nitrate (AgNO(3)) staining as well as agarose vs. polyacrylamide gel electrophoresis (PAGE). RESULTS: Using two pair consensus primers sited at VH (FR3 and FR2) and at JH, 91% of B-NHL samples displayed monoclonal products after heteroduplex PCR analysis using PAGE and AgNO(3) staining. Moreover, no polyclonal sample showed a monoclonal PCR product. By contrast, false positive results were obtained when using agarose (5/28) and PAGE without heteroduplex analysis: 2/28 and 8/28 with EtBr and AgNO(3) staining, respectively. In addition, false negative results only appeared with EtBr staining: 13/42 in agarose, 4/42 in PAGE without heteroduplex analysis and 7/42 in PAGE after heteroduplex analysis. INTERPRETATION AND CONCLUSIONS: We conclude that AgNO(3) stained PAGE after heteroduplex analysis is the most suitable strategy for detecting monoclonal rearrangements in B-NHL samples because it does not produce false-positive results and the risk of false-negative results is very low.