4 resultados para adaptive algorithms


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we concentrate on the direct semi-blind spatial equalizer design for MIMO systems with Rayleigh fading channels. Our aim is to develop an algorithm which can outperform the classical training based method with the same training information used, and avoid the problems of low convergence speed and local minima due to pure blind methods. A general semi-blind cost function is first constructed which incorporates both the training information from the known data and some kind of higher order statistics (HOS) from the unknown sequence. Then, based on the developed cost function, we propose two semi-blind iterative and adaptive algorithms to find the desired spatial equalizer. To further improve the performance and convergence speed of the proposed adaptive method, we propose a technique to find the optimal choice of step size. Simulation results demonstrate the performance of the proposed algorithms and comparable schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new search-space-updating technique for genetic algorithms is proposed for continuous optimisation problems. Other than gradually reducing the search space during the evolution process with a fixed reduction rate set ‘a priori’, the upper and the lower boundaries for each variable in the objective function are dynamically adjusted based on its distribution statistics. To test the effectiveness, the technique is applied to a number of benchmark optimisation problems in comparison with three other techniques, namely the genetic algorithms with parameter space size adjustment (GAPSSA) technique [A.B. Djurišic, Elite genetic algorithms with adaptive mutations for solving continuous optimization problems – application to modeling of the optical constants of solids, Optics Communications 151 (1998) 147–159], successive zooming genetic algorithm (SZGA) [Y. Kwon, S. Kwon, S. Jin, J. Kim, Convergence enhanced genetic algorithm with successive zooming method for solving continuous optimization problems, Computers and Structures 81 (2003) 1715–1725] and a simple GA. The tests show that for well-posed problems, existing search space updating techniques perform well in terms of convergence speed and solution precision however, for some ill-posed problems these techniques are statistically inferior to a simple GA. All the tests show that the proposed new search space update technique is statistically superior to its counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the purpose of equalisation of rapidly time variant multipath channels, we derive a novel adaptive algorithm, the amplitude banded LMS (ABLMS); which implements a nonlinear adaptation based on a coefficient matrix. Then we develop the: ABLMS algorithm as the adaptation procedure for a linear transversal equaliser (LTE) and a decision feedback equaliser (DFE) where a parallel adaptation scheme is deployed. Computer simulations demonstrate that with a small increase of computational complexity, the ABLMS based parallel equalisers provide a significant improvement related to the conventional LMS DFE and the LMS LTE in the case of a second order Markov communication channel model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a digital echo canceller it is desirable to reduce the adaptation time, during which the transmission of useful data is not possible. LMS is a non-optimal algorithm in this case as the signals involved are statistically non-Gaussian. Walach and Widrow (IEEE Trans. Inform. Theory 30 (2) (March 1984) 275-283) investigated the use of a power of 4, while other research established algorithms with arbitrary integer (Pei and Tseng, IEEE J. Selected Areas Commun. 12(9)(December 1994) 1540-1547) or non-quadratic power (Shah and Cowan, IEE.Proc.-Vis. Image Signal Process. 142 (3) (June 1995) 187-191). This paper suggests that continuous and automatic, adaptation of the error exponent gives a more satisfactory result. The family of cost function adaptation (CFA) stochastic gradient algorithm proposed allows an increase in convergence rate and, an improvement of residual error. As special case the staircase CFA algorithm is first presented, then the smooth CFA is developed. Details of implementations are also discussed. Results of simulation are provided to show the properties of the proposed family of algorithms. (C) 2000 Elsevier Science B.V. All rights reserved.