4 resultados para acute respiratory-infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND:  We used four years of paediatric severe acute respiratory illness (SARI) sentinel surveillance in Blantyre, Malawi to identify factors associated with clinical severity and co-viral clustering.

METHODS:  From January 2011 to December 2014, 2363 children aged 3 months to 14 years presenting to hospital with SARI were enrolled. Nasopharyngeal aspirates were tested for influenza and other respiratory viruses. We assessed risk factors for clinical severity and conducted clustering analysis to identify viral clusters in children with co-viral detection.

RESULTS:  Hospital-attended influenza-positive SARI incidence was 2.0 cases per 10,000 children annually; it was highest children aged under 1 year (6.3 cases per 10,000), and HIV-infected children aged 5 to 9 years (6.0 cases per 10,000). 605 (26.8%) SARI cases had warning signs, which were positively associated with HIV infection (adjusted risk ratio [aRR]: 2.4, 95% CI: 1.4, 3.9), RSV infection (aRR: 1.9, 95% CI: 1.3, 3.0) and rainy season (aRR: 2.4, 95% CI: 1.6, 3.8). We identified six co-viral clusters; one cluster was associated with SARI with warning signs.

CONCLUSIONS:  Influenza vaccination may benefit young children and HIV infected children in this setting. Viral clustering may be associated with SARI severity; its assessment should be included in routine SARI surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background

It is unknown whether a conservative approach to fluid administration or deresuscitation (active removal of fluid using diuretics or renal replacement therapy) is beneficial following haemodynamic stabilisation of critically ill patients.

Purpose

To evaluate the efficacy and safety of conservative or deresuscitative fluid strategies in adults and children with acute respiratory distress syndrome (ARDS), sepsis or systemic inflammatory response syndrome (SIRS) in the post-resuscitation phase of critical illness.

Methods

We searched Medline, EMBASE and the Cochrane central register of controlled trials from 1980 to June 2016, and manually reviewed relevant conference proceedings from 2009 to the present. Two reviewers independently assessed search results for inclusion and undertook data extraction and quality appraisal. We included randomised trials comparing fluid regimens with differing fluid balances between groups, and observational studies investigating the relationship between fluid balance and clinical outcomes.

Results

Forty-nine studies met the inclusion criteria. Marked clinical heterogeneity was evident. In a meta-analysis of 11 randomised trials (2051 patients) using a random-effects model, we found no significant difference in mortality with conservative or deresuscitative strategies compared with a liberal strategy or usual care [pooled risk ratio (RR) 0.92, 95 % confidence interval (CI) 0.82–1.02, I2 = 0 %]. A conservative or deresuscitative strategy resulted in increased ventilator-free days (mean difference 1.82 days, 95 % CI 0.53–3.10, I2 = 9 %) and reduced length of ICU stay (mean difference −1.88 days, 95 % CI −0.12 to −3.64, I2 = 75 %) compared with a liberal strategy or standard care.

Conclusions

In adults and children with ARDS, sepsis or SIRS, a conservative or deresuscitative fluid strategy results in an increased number of ventilator-free days and a decreased length of ICU stay compared with a liberal strategy or standard care. The effect on mortality remains uncertain. Large randomised trials are needed to determine optimal fluid strategies in critical illness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims/purpose: Getting off the ventilator is an important patient-centred outcome for patients with acute respiratory failure. It signifies an improvement in patient condition, enables easier communication, reduces fear and anxiety and consequently a reduced requirement for sedatives. Weaning from ventilation therefore is a core ICU nursing task that is addressed in this presentation.
Presentation description: There are different schools of thought on when ventilator weaning begins including: (a) from intubation with titration of support; and (b) only when the patient’s condition improves. There are also different schools of thought on how to wean including gradual reductions in ventilator support to: (a) a low level consistent with extubation; or (b) to a level to attempt a spontaneous breathing trial followed by extubation if successful. Regardless of the approach, what is patient-relevant is the need to determine early when the patient may be ‘ready’ to discontinue ventilation. This time point can be assessed using simple criteria and should involve all ICU staff to the level of their experience. This presentation challenges the notion that only senior nurses or nurses with a ‘weaning course’ should be involved in the weaning process and proposes opportunities for engaging nurses with all levels of experience.
Conclusion: An ICU nursing taskforce that is focused and engaged in determining patient readiness for weaning can make a strong contribution to patient-relevant outcomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Non-invasive ventilation (NIV) is increasingly used in patients with Acute Respiratory Distress Syndrome (ARDS). Whether, during NIV, the categorization of ARDS severity based on the PaO2/FiO2 Berlin criteria is useful is unknown. The evidence supporting NIV use in patients with ARDS remains relatively sparse.

Methods: The Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study described the management of patients with ARDS. This sub-study examines the current practice of NIV use in ARDS, the utility of the PaO2/FiO2 ratio in classifying patients receiving NIV and the impact of NIV on outcome.

Results: Of 2,813 patients with ARDS, 436 (15.5%) were managed with NIV on days 1 and 2 following fulfillment of diagnostic criteria. Classification of ARDS severity based on PaO2/FiO2 ratio was associated with an increase in intensity of ventilatory support, NIV failure, and Intensive Care Unit (ICU) mortality. NIV failure occurred in 22.2% of mild, 42.3% of moderate and 47.1% of patients with severe ARDS. Hospital mortality in patients with NIV success and failure was 16.1 % and 45.4%, respectively. NIV use was independently associated with increased ICU (HR 1.446; [1.159-1.805]), but not hospital mortality. In a propensity matched analysis, ICU mortality was higher in NIV than invasively ventilated patients with a PaO2/FiO2 lower than 150 mmHg.

Conclusions: NIV was used in 15% of patients with ARDS, irrespective of severity category. NIV appears to be associated with higher ICU mortality in patients with a PaO2/FiO2 lower than 150 mmHg.

Trial Registration: ClinicalTrials.gov NCT02010073