59 resultados para ZNS-MN2 NANOPARTICLES
Structural and spectroscopic investigation of ZnS nanoparticles grown in quaternary reverse micelles
Resumo:
We present a method for simulating clusters or, molecules subjected to an external pressure, which is exerted by a pressure-transmitting medium. It is based on the canoninical Langevin thermostat, but extended in such a way that the Brownian forces are allowed to operate only from the region exterior to the cluster. We show that the frictional force of the Langevin thermostat is linked to the pressure of the reservoir in a unique way, and that this property manifests itself when the particle it acts upon is not pointlike but has finite dimensions. By choosing appropriately the strength of the random forces and the friction coefficient, both temperature and pressure can be controlled independently. We illustrate the capabilities of this new method by calculating the compressibility of small gold clusters under pressure.
Resumo:
This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The density of reactive carboxyl groups on the surface of poly(lactide-co-glycolide) (PLGA) nanoparticles (NP) was modulated using a combination of high-molecular weight (MW) encapped and low MW non-encapped PLGA. Carboxyl groups were activated using carbodiimide chemistry and conjugated to bovine serum albumin and a model polyclonal antibody. Activation of carboxyl,groups in solution-phase PLGA prior to NP formation was compared with a postformation activation of peripheral carboxyl groups on intact NP. Activation before or after NP formation did not influence conjugation efficiency to NP prepared using 100% of the low-MW PLGA. The effect of steric stabilization using poly(vinyl alcohol) reduced conjugation of a polyclonal antibody from 62 mu g/(mg NP) to 32 mu g/(mg NP), but enhanced particulate stability. Increasing the amount of a high-MW PLGA also reduced Conjugation, with the activation post-formation still superior to the preformation approach. Drug release studies showed that high proportions of high-MW PLGA in the NP produced a longer sustained release profile of a model drug (celecoxib). It can be concluded that activating intact PLGA NP is superior to activating component parts prior to NP formation. Also, high MW PLGA could be used to prolong drug release, but at the expense of conjugation efficiency on to the NP surface. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 873-884, 2008
Resumo:
Purpose: To prepare a nanoparticulate formulation expressing variable peripheral carboxyl density using non-endcapped and endcapped poly(lactide-co-glycolide), conjugated to antibodies recognising the siglec-7 receptor, which is expressed on most acute myeloid leukaemias. The aim is to exploit this receptor as a therapeutic target by constructing an internalising drug-loaded nanoparticle able to<br/>translocate into cytoplasm by siglec receptor-mediated internalisation.<br/><br/>Materials and Methods: Antibodies to the siglec-7 (CD33-like) receptor were conjugated to dye-loaded nanoparticles using carbodiimide chemistry, giving 32.6 mg protein per mg of nanoparticles using 100% of the non-endcapped PLGA. Binding studies using cognate antigen were used to verify preservation of antibody function following conjugation.<br/><br/>Results: Mouse embryonic fibroblasts expressing recombinant siglec-7 receptor and exposed to NileRed-loaded nanoparticles conjugated to antibody accumulated intracellular fluorescence, which was not observed if either antibody or siglec-7 receptor was absent. Confocal microscopy revealed internalised perinuclear cytoplasmic staining, with an Acridine Orange-based analysis showing red staining in localised foci, indicating localisation within acidic endocytic compartments.<br/><br/>Conclusions: Results show antibody-NP constructs are internalised via siglec-7 receptor-mediated internalisation. If loaded with a therapeutic agent, antibody-NP constructs can cross into cytoplasmic<br/>space and delivery drugs intracellularly to cells expressing CD33-like receptors, such as natural killer cells and monocytes.
Resumo:
Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.
Resumo:
Since the discovery of a series of Au-based catalysts by Haruta et al. considerable progress has been made in understanding the active role of Au in CO oxidation catalysis. This review provides a summary of recent theoretical work performed in this field; in particular it addresses DFT studies of CO oxidation catalysis over free and supported gold nanoparticles. Several properties of the Au particles have been found to contribute to their unique catalytic activity. Of these properties, the low-coordination state of the Au atoms is arguably the most pertinent, although other properties of the Au cluster atoms, such as electronic charge, cannot be ignored. The current consensuses regarding the mechanism for CO oxidation over Au-based catalysts is also discussed. Finally, water-enhanced catalysis of CO oxidation on Au clusters is summarized.
Resumo:
Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I-nic/I-pyr against the concentration of nicotine were non-linear but plotting I-nic/I-pyr against [nicotine](x) (x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R-2 typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.
Resumo:
Delivering sufficient dose to tumours while sparing surrounding tissue is one of the primary challenges of radiotherapy, and in common practice this is typically achieved by using highly penetrating MV photon beams and spatially shaping dose. However, there has been a recent increase in interest in the possibility of using contrast agents with high atomic number to enhance the dose deposited in tumours when used in conjunction with kV x-rays, which see a significant increase in absorption due to the heavy element's high-photoelectric cross-section at such energies. Unfortunately, the introduction of such contrast agents significantly complicates the comparison of different source types for treatment efficacy, as the dose deposited now depends very strongly on the exact composition of the spectrum, making traditional metrics such as beam quality less valuable. To address this, a 'figure of merit' is proposed, which yields a value which enables the direct comparison of different source types for tumours at different depths inside a patient. This figure of merit is evaluated for a 15 MV LINAC source and two 150 kVp sources (both of which make use of a tungsten target, one with conventional aluminium filtration, while the other uses a more aggressive thorium filter) through analytical methods as well as numerical models, considering tissue treated with a realistic concentration and uptake ratio of gold nanoparticle contrast agents (10 mg ml(-1) concentration in 'tumour' volume, 10: 1 uptake ratio). Finally, a test case of human neck phantom is considered with a similar contrast agent to compare the abstract figure to a more realistic treatment situation. Good agreement was found both between the different approaches to calculate the figure of merit, and between the figure of merit and the effectiveness in a more realistic patient scenario. Together, these observations suggest that there is the potential for contrast-enhanced kilovoltage radiation to be a useful therapeutic tool for a number of classes of tumour on dosimetric considerations alone, and they point to the need for further research in this area.