4 resultados para Z-R relationships
Resumo:
Background: Existing literature indicates that young people in state carehave particular sexual health needs that include addressing their social andemotional well-being, yet little has been published as to how thesecomponents of sex education are actually delivered by service-providers.Objective: To analyse the processes involved in delivering relationship andsexuality education to young people in state care from the perspectives ofa sample of service-providers with a role in sexual health care delivery.Design: Qualitative methodological strategy.Setting: Service-delivery sites at urban and rural locations in Ireland.Method: Twenty-two service-providers were interviewed in depth, and datawere analysed using a qualitative analytical strategy resembling modifiedanalytical induction.Findings: Participants proffered their perceptions and examples of theirpractices of sex education in relation to the following themes: (1)acknowledging the multi-dimensional nature of sexual health in the case ofyoung people in care; (2) personal and emotional development educationto address poor self-esteem, emotional disconnectedness and an inabilityto recognise and express emotions; (3) social skills’ education as part of arepertoire of competencies needed to negotiate relationships and safer sex;(4) the application of positive social skills embedded in everyday socialsituations; and (5) factual sexuality education.Conclusion: Insights into service providers’ perceptions of the multidimensionalnature of the sexual health needs of young people in statecare, and the ways in which these service-providers justified their practicemake visible the complex character of sex education and the degree of skillrequired to deliver it to those in state care.
Resumo:
The Li-O2 battery may theoretically possess practical gravimetric energy densities several times greater than the current state-of-the-art Li-ion batteries.1 This magnitude of development is a requisite for true realization of electric vehicles capable of competing with the traditional combustion engine. However, significant challenges must be addressed before practical application may be considered. These include low efficiencies, low rate capabilities and the parasitic decomposition reactions of electrolyte/electrode materials resulting in very poor rechargeability.2-4 Ionic liquids, ILs, typically display several properties, extremely low vapor pressure and high electrochemical and thermal stability, which make them particularly interesting for Li-O2 battery electrolytes. However, the typically sluggish transport properties generally inhibit rate performance and cells suffer similar inefficiencies during cycling.5,6
In addition to the design of new ILs with tailored properties, formulating blended electrolytes using molecular solvents with ILs has been considered to improve their performance.7,8 In this work, we will discuss the physical properties vs. the electrochemical performance of a range of formulated electrolytes based on tetraglyme, a benchmark Li-O2 battery electrolyte solvent, and several ILs. The selected ILs are based on the bis{(trifluoromethyl)sulfonyl}imide anion and alkyl/ether functionalized cyclic alkylammonium cations, which exhibit very good stability and moderate viscosity.9 O2 electrochemistry will be investigated in these media using macro and microdisk voltammetry and O2 solubility/diffusivity is quantified as a function of the electrolyte formulation. Furthermore, galvanostatic cycling of selected electrolytes in Li-O2 cells will be discussed to probe their practical electrochemical performance. Finally, the physical characterization of the blended electrolytes will be reported in parallel to further determine structure (or formulation) vs. property relationships and to, therefore, assess the importance of certain electrolyte properties (viscosity, O2supply capability, donor number) on their performance.
This work was funded by the EPSRC (EP/L505262/1) and Innovate UK for the Practical Lithium-Air Batteries project (project number: 101577).
1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 11, 19 (2012).
2. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Barde and P. G. Bruce, Angew. Chem., Int. Ed., 50, 8609 (2011).
3. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov and A. C. Luntz, J. Phys. Chem. Lett., 3, 997 (2012).
4. D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. Ortiz-Vitoriano, P. Hammond, C. V. Thompson and Y. Shao-Horn, J. Phys. Chem. Lett., 5, 2850 (2014).
5. Z. H. Cui, W. G. Fan and X. X. Guo, J. Power Sources, 235, 251 (2013).
6. F. Soavi, S. Monaco and M. Mastragostino, J. Power Sources, 224, 115 (2013).
7. L. Cecchetto, M. Salomon, B. Scrosati and F. Croce, J. Power Sources, 213, 233 (2012).
8. A. Khan and C. Zhao, Electrochem. Commun., 49, 1 (2014).
9. Z. J. Chen, T. Xue and J.-M. Lee, RSC Adv., 2, 10564 (2012).
Resumo:
Given recent demands for more co-creational university technology commercialisation
processes involving industry and end users, this paper adopts a micro level approach to explore
the challenges faced by universities when managing quadruple helix stakeholders within the
technology commercialisation processes. To explore this research question, a qualitative
research methodology which relies upon comparative case analysis was adopted to explore the
technology commercialisation process in two universities within a UK region. The findings
revealed that university type impacts Quadruple Helix stakeholder salience and engagement
and consequently university technology commercialisation activities and process. This is
important as recent European regional policy fails to account for contextual influences when
promoting Quadruple Helix stakeholder relationships in co-creational university technology
commercialisation.