115 resultados para Writing direction
Resumo:
When viewing two superimposed, translating sets of dots moving in different directions, one overestimates the direction difference. This phenomenon of direction repulsion is thought to be driven by inhibitory interactions between directionally tuned motion detectors [1, 2]. However, there is disagreement on where this occurs — at early stages of motion processing [1, 3], or at the later, global motion-processing stage following “pooling” of these measures [4–6]. These two stages of motion pro - cessing have been identified as occurring in area V1 and the human homolog of macaque MT/V5, respectively[7, 8]. We designed experiments in which local and global predictions of repulsion are pitted against one another. Our stimuli contained a target set of dots, moving at a uniform speed, superimposed on a “mixed-speed” distractor set. Because the perceived speed of a mixed-speed stimulus is equal to the dots’ average speed [9], a global-processing account of direction repulsion predicts that repulsion magnitude induced by a mixed-speed distractor will be indistinguishable from that induced by a single-speed distractor moving at the same mean speed. This is exactly what we found. These results provide compelling evidence that global-motion interactions play a major role in driving direction repulsion.
Resumo:
Direction repulsion describes the phenomenon in which observers typically overestimate the direction difference between two superimposed motions moving in different directions (Marshak & Sekuler, Science 205(1979) 1399). Previous research has found that, when a relatively narrow range of distractor speeds is considered, direction repulsion of a target motion increases monotonically with increasing speed of the distractor motion. We sought to obtain a more complete measurement of this speed-tuning function by considering a wider range of distractor speeds than has previously been used. Our results show that, contrary to previous reports, direction repulsion as a function of distractor speed describes an inverted U-function. For a target of 2.5deg/s, we demonstrate that the attenuation of repulsion magnitude with high-speed disractors can be largely explained in terms of the reduced apparent contrast of the distractor. However, when we reduce target motion speed, this no longer holds. When considered from the perspective of Edwards et al.s (Edwards, Badcock, & Smith, Vision Research 38 (1998) 1573) two global-motion channels, our results suggest that direction repulsion is speed dependent when the distractor and target motions are processed by different globalmotion channels, but is not speed dependent when both motions are processed by the same, high-speed channel. The implications of these results for models of direction repulsion are discussed.
Resumo:
The processing of motion information by the visual system can be decomposed into two general stages; point-by-point local motion extraction, followed by global motion extraction through the pooling of the local motion signals. The direction aftereVect (DAE) is a well known phenomenon in which prior adaptation to a unidirectional moving pattern results in an exaggerated perceived direction diVerence between the adapted direction and a subsequently viewed stimulus moving in a diVerent direction. The experiments in this paper sought to identify where the adaptation underlying the DAE occurs within the motion processing hierarchy. We found that the DAE exhibits interocular transfer, thus demonstrating that the underlying adapted neural mechanisms are binocularly driven and must, therefore, reside in the visual cortex. The remaining experiments measured the speed tuning of the DAE, and used the derived function to test a number of local and global models of the phenomenon. Our data provide compelling evidence that the DAE is driven by the adaptation of motion-sensitive neurons at the local-processing stage of motion encoding. This is in contrast to earlier research showing that direction repulsion, which can be viewed as a simultaneous presentation counterpart to the DAE, is a global motion process. This leads us to conclude that the DAE and direction repulsion reflect interactions between motion-sensitive neural mechanisms at different levels of the motion-processing hierarchy.
Resumo:
To what extent do bestselling travel books, such as those by Paul
Theroux, Bill Bryson, Bruce Chatwin and Michael Palin, tell us as
much about world politics as newspaper articles, policy documents and
press releases? Debbie Lisle argues that the formulations of genre,
identity, geopolitics and history at work in contemporary travel writing
are increasingly at odds with a cosmopolitan and multicultural world in
which ‘everybody travels’. Despite the forces of globalisation, common
stereotypes about ‘foreignness’ continue to shape the experience of
modern travel. The Global Politics of Contemporary Travel Writing is
concerned with the way contemporary travelogues engage with, and try
to resolve, familiar struggles in global politics such as the protection of
human rights, the promotion of democracy, the management of
equality within multiculturalism and the reduction of inequality. This is
a thoroughly interdisciplinary book that draws from international
relations, literary theory, political theory, geography, anthropology and
history.