7 resultados para Wireless communication systems -- Security measures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new method of establishing secret keys for wireless communications is proposed. A retrodirective array (RDA) that is configured to receive and re-transmit at different frequencies is utilized as a relay node. Specifically the analogue RDA is able to respond in ‘real-time’, reducing the required number of time slots for key establishment to two, compared with at least three in previous relay key generation schemes. More importantly, in the proposed architecture equivalent reciprocal wireless channels between legitimate keying nodes can be randomly updated within one channel coherence time period, leading to greatly increased key generation rates (KGRs) in slow fading environment. The secrecy performance of this RDA assisted key generation system is evaluated and it is shown that it outperforms previous relay key generation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale multiple-input multiple-output (MIMO) communication systems can bring substantial improvement in spectral efficiency and/or energy efficiency, due to the excessive degrees-of-freedom and huge array gain. However, large-scale MIMO is expected to deploy lower-cost radio frequency (RF) components, which are particularly prone to hardware impairments. Unfortunately, compensation schemes are not able to remove the impact of hardware impairments completely, such that a certain amount of residual impairments always exists. In this paper, we investigate the impact of residual transmit RF impairments (RTRI) on the spectral and energy efficiency of training-based point-to-point large-scale MIMO systems, and seek to determine the optimal training length and number of antennas which maximize the energy efficiency. We derive deterministic equivalents of the signal-to-noise-and-interference ratio (SINR) with zero-forcing (ZF) receivers, as well as the corresponding spectral and energy efficiency, which are shown to be accurate even for small number of antennas. Through an iterative sequential optimization, we find that the optimal training length of systems with RTRI can be smaller compared to ideal hardware systems in the moderate SNR regime, while larger in the high SNR regime. Moreover, it is observed that RTRI can significantly decrease the optimal number of transmit and receive antennas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the transmission of confidential information over a κ-μ fading channel in the presence of an eavesdropper who also experiences κ-μ fading. In particular, we obtain novel analytical solutions for the probability of strictly positive secrecy capacity (SPSC) and a lower bound of secure outage probability (SOPL) for independent and non-identically distributed channel coefficients without parameter constraints. We also provide a closed-form expression for the probability of SPSC when the μ parameter is assumed to take positive integer values. Monte-Carlo simulations are performed to verify the derived results. The versatility of the κ-μ fading model means that the results presented in this paper can be used to determine the probability of SPSC and SOPL for a large number of other fading scenarios, such as Rayleigh, Rice (Nakagamin), Nakagami-m, One-Sided Gaussian, and mixtures of these common fading models. In addition, due to the duality of the analysis of secrecy capacity and co-channel interference (CCI), the results presented here will have immediate applicability in the analysis of outage probability in wireless systems affected by CCI and background noise (BN). To demonstrate the efficacy of the novel formulations proposed here, we use the derived equations to provide a useful insight into the probability of SPSC and SOPL for a range of emerging wireless applications, such as cellular device-to-device, peer-to-peer, vehicle-to-vehicle, and body centric communications using data obtained from real channel measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cybercriminals ramp up their efforts with sophisticated techniques while defenders gradually update their typical security measures. Attackers often have a long-term interest in their targets. Due to a number of factors such as scale, architecture and nonproductive traffic however it makes difficult to detect them using typical intrusion detection techniques. Cyber early warning systems (CEWS) aim at alerting such attempts in their nascent stages using preliminary indicators. Design and implementation of such systems involves numerous research challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This paper discusses such challenges and presents the reader with compelling motivation. A carefully deployed empirical analysis using a real world attack scenario and a real network traffic capture is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show how the polarisation state of a linearly polarised antenna can be recovered through the use of a three-term error correction model. The approach adopted is shown to be robust in situations where some multipath exists and where the sampling channels are imperfect with regard to both their amplitude and phase tracking. In particular, it has been shown that error of the measured polarisation tilt angle can be improved from 33% to 3% and below by applying the proposed calibration method. It is described how one can use a rotating dipole antenna as both the calibration standard and as the polarisation encoder, thus simplifying the physical arrangement of the transmitter. Experimental results are provided in order to show the utility of the approach, which could have a variety of applications including bandwidth conservative polarisation sub-modulation in advanced wireless communications systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two direct sampling correlator-type receivers for differential chaos shift keying (DCSK) communication systems under frequency non-selective fading channels are proposed. These receivers operate based on the same hardware platform with different architectures. In the first scheme, namely sum-delay-sum (SDS) receiver, the sum of all samples in a chip period is correlated with its delayed version. The correlation value obtained in each bit period is then compared with a fixed threshold to decide the binary value of recovered bit at the output. On the other hand, the second scheme, namely delay-sum-sum (DSS) receiver, calculates the correlation value of all samples with its delayed version in a chip period. The sum of correlation values in each bit period is then compared with the threshold to recover the data. The conventional DCSK transmitter, frequency non-selective Rayleigh fading channel, and two proposed receivers are mathematically modelled in discrete-time domain. The authors evaluated the bit error rate performance of the receivers by means of both theoretical analysis and numerical simulation. The performance comparison shows that the two proposed receivers can perform well under the studied channel, where the performances get better when the number of paths increases and the DSS receiver outperforms the SDS one.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cyber-physical systems tightly integrate physical processes and information and communication technologies. As today’s critical infrastructures, e.g., the power grid or water distribution networks, are complex cyber-physical systems, ensuring their safety and security becomes of paramount importance. Traditional safety analysis methods, such as HAZOP, are ill-suited to assess these systems. Furthermore, cybersecurity vulnerabilities are often not considered critical, because their effects on the physical processes are not fully understood. In this work, we present STPA-SafeSec, a novel analysis methodology for both safety and security. Its results show the dependencies between cybersecurity vulnerabilities and system safety. Using this information, the most effective mitigation strategies to ensure safety and security of the system can be readily identified. We apply STPA-SafeSec to a use case in the power grid domain, and highlight its benefits.