81 resultados para Wireless Mesh Networks. IEEE 802.11s. Testbeds. Management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localization is one of the key technologies in Wireless Sensor Networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints on cost and power consumption make it infeasible to equip each sensor node in the network with a Global Position System (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use mobile anchor nodes (MANs), which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. A considerable body of research has addressed the Mobile Anchor Node Assisted Localization (MANAL) problem. However to the best of our knowledge, no updated surveys on MAAL reflecting recent advances in the field have been presented in the past few years. This survey presents a review of the most successful MANAL algorithms, focusing on the achievements made in the past decade, and aims to become a starting point for researchers who are initiating their endeavors in MANAL research field. In addition, we seek to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful advances in this research field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the IEEE 802.11 MAC layer protocol, there are different trade-off points between the number of nodes competing for the medium and the network capacity provided to them. There is also a trade-off between the wireless channel condition during the transmission period and the energy consumption of the nodes. Current approaches at modeling energy consumption in 802.11 based networks do not consider the influence of the channel condition on all types of frames (control and data) in the WLAN. Nor do they consider the effect on the different MAC and PHY schemes that can occur in 802.11 networks. In this paper, we investigate energy consumption corresponding to the number of competing nodes in IEEE 802.11's MAC and PHY layers in error-prone wireless channel conditions, and present a new energy consumption model. Analysis of the power consumed by each type of MAC and PHY over different bit error rates shows that the parameters in these layers play a critical role in determining the overall energy consumption of the ad-hoc network. The goal of this research is not only to compare the energy consumption using exact formulae in saturated IEEE 802.11-based DCF networks under varying numbers of competing nodes, but also, as the results show, to demonstrate that channel errors have a significant impact on the energy consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless enabled portable devices must operate with the highest possible energy efficiency while still maintaining a minimum level and quality of service to meet the user's expectations. The authors analyse the performance of a new pointer-based medium access control protocol that was designed to significantly improve the energy efficiency of user terminals in wireless local area networks. The new protocol, pointer controlled slot allocation and resynchronisation protocol (PCSAR), is based on the existing IEEE 802.11 point coordination function (PCF) standard. PCSAR reduces energy consumption by removing the need for power saving stations to remain awake and listen to the channel. Using OPNET, simulations were performed under symmetric channel loading conditions to compare the performance of PCSAR with the infrastructure power saving mode of IEEE 802.11, PCF-PS. The simulation results demonstrate a significant improvement in energy efficiency without significant reduction in performance when using PCSAR. For a wireless network consisting of an access point and 8 stations in power saving mode, the energy saving was up to 31% while using PCSAR instead of PCF-PS, depending upon frame error rate and load. The results also show that PCSAR offers significantly reduced uplink access delay over PCF-PS while modestly improving uplink throughput.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quality of Service (QoS) support in IEEE 802.11-based ad hoc networks relies on the networks’ ability to estimate the available bandwidth on a given link. However, no mechanism has been standardized to accurately evaluate this resource. This remains one of the main issues open to research in this field. This paper proposes an available bandwidth estimation approach which achieves more accurate estimation when compared to existing research. The proposed approach differentiates the channel busy caused by transmitting or receiving from that caused by carrier sensing, and thus improves the accuracy of estimating the overlap probability of two adjacent nodes’ idle time. Simulation results testify the improvement of this approach when compared with well known bandwidth estimation methods in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Letter rethinks the problems of available bandwidth estimation in IEEE 802.11-based ad hoc networks. The estimation accuracy is increased by improving the calculation accuracy that the probability for two adjacent nodes' idle periods toverlap (a key issue when estimating the available bandwidth in 802.11 networks)