33 resultados para Water in literature
Resumo:
Hands can be a vector for transmitting pathogenic microorganisms to foodstuffs and drinks, and to the mouths of susceptible hosts. Hand washing is the primary barrier to prevent transmission of enteric pathogens via cross contamination from infected persons. Conventional hand washing involves the use of warm water, soap and friction to remove dirt and microorganisms. Over recent years there has been an increasing availability of hand sanitizing products for use when water and soap are unavailable. The aim of this systematic review was to collate scientific information on the efficacy of hand sanitizers compared to hand washing with soap and water for the removal of foodborne pathogens from the hands of food handlers. An extensive literature search was carried out using three electronic databases - Web of Science, Scopus and PubMed. Twenty-eight scientific publications were ultimately included in the review. Analysis of the literature showed various limitations in the scientific information due to the absence of a standardized protocol to evaluate efficacy of hand products, and variation in experimental conditions applied in different studies. Despite the existence of conflicting results, scientific evidence seems to support the historical scepticism about the use of water-less hand sanitizers in food preparation settings. Water and soap appear to achieve greater removal of soil and microorganisms than water-less products from hands. None of the hand sanitizers tested in the literature seemed to achieve complete inactivation or removal of all foodborne pathogens tested, and the presence of food debris significantly affected inactivation rates of hand products.
Resumo:
Water, one of the most popular species in our planet, can play a catalytic role in many reactions, including reactions in heterogeneous catalysis. In a recent experimental work, Bergeld, Kasemo, and Chakarov demonstrated that water is able to promote CO oxidation under low temperatures (similar to200 K). In this study, we choose CO oxidation on Pt(111) in the presence of water as a model system to address the catalytic role of water for surface reactions in general using density functional theory. Many elementary steps possibly involved in the CO oxidation on Pt(111) at low temperatures have been investigated. We find the following. First, in the presence of water, the CO oxidation barrier is reduced to 0.33 eV (without water the barrier is 0.80 eV). This barrier reduction is mainly due to the H-bonding between the H in the H2O and the O at the transition state (TS), which stabilizes the TS. Second, CO can readily react with OH with a barrier of 0.44 eV, while COOH dissociation to produce CO2 is not easy (the barrier is 1.02 eV). Third, in the H2O+OH mixed phase, CO can be easily converted into CO2. It occurs through two steps: CO reacts with OH, forming COOH; and COOH transfers the H to a nearby H2O and, at the same time, an H in the H2O transfers to a OH, leading to CO2 formation. The reaction barrier of this process is 0.60 eV under CO coverage of 1/6 ML and 0.33 eV under CO coverage of 1/3 ML. The mechanism of CO oxidation at low temperatures is discussed. On the basis of our calculations, we propose that the water promotion effect can in general be divided into two classes: (i) By H-bonding between the H of H2O and an electron negative species such as the O in the reaction of CO+O+H2O-->CO2+H2O, H2O can stabilize the TS of the reaction and hence reduce the barrier. (ii) H2O first dissociates into H and OH and then OH or H participates directly in the reaction to induce new reaction mechanism with more favorable routes, in which OH or H can act as an intermediate. (C) 2003 American Institute of Physics.
Resumo:
We describe perfluoropolyether (PFPE) surfactants which are capable of stabilising the water/CO2 interface and present FTIR spectroscopic evidence for the formation of water in supercritical carbon dioxide microemulsions. A wide variety of single chain surfactants of differing chain lengths but similar structure has been screened and the effect of the surfactant chain length on the water uptake was studied. The ammonium carboxylate of the PFPE surfactant Krytox FSL(TM) with an average molecular weight of 2500 g mol(-1) was demonstrated to be the surfactant capable of dissolving the most water out of all the tested surfactants and hence to have the optimum chain length. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
As a consequence of the accelerating technological development and the impact of cultural globalisation, the transnational aspects of the process of adaptation have become increasingly crucial in recent years. To go back to the very beginnings of the twentieth century and research the historical connections between popular literature, theatre, and film can shed greater light on the origins of these phenomena. By focusing on two case studies from turn-of-the-century crime fiction, this paper examines the extent to which practices of serialisation, translation, and adaptation of literary works contributed to the formation of a transnational market for popular culture. Ernest W. Hornung’s A. J. Raffles and Maurice Leblanc’s Arsène Lupin were the heroes of two crime series that were immediately translated, imitated, and adapted into countless theatrical plays and films all over the world. Given the resemblance between the two characters, the two franchises frequently ended by overlapping. Their ability to move from a medium to another as well as from a country to another was the result of the logic of ‘recycling, remaking, retelling’ (Brian Naremore) that guides not only the process of adaptation but also the creation of any work of popular culture.
Resumo:
CO and C3H6 oxidation have been carried out in the absence and presence of water over a Pd/Al2O3catalyst. It is clear that water promotes CO and, as a consequence, C3H6oxidation takes place at muchlower temperatures compared with the dry feed. The significant increase in the catalyst’s activity withrespect to CO oxidation is not simply associated with changes in surface concentration as a result ofcompetitive adsorption effects. Utilising18O2as the reactant allows the pathways whereby the oxidationdue to gaseous dioxygen and where the water activates the CO and C3H6to be distinguished. In thepresence of water, the predominant pathway is via water activation with C16O2and C16O18O being themajor species formed and oxidation with dioxygen plays a secondary role. The importance of wateractivation is further supported by the significant decrease in its effect when using D2O versus H2O.
Resumo:
Infrared water line emission from protoplanetary disks, recently observed by the Spitzer and Herschel space telescopes, is thought to trace the surface layer of the inner to outer regions of the disks. We have modelled the water abundance profile and line emission, especially focusing on the effects of dust size growth and turbulent mixing. Comparison between model calculations and observations suggests a small grain model with turbulent mixing is preferred. Copyright © International Astronomical Union 2014.