10 resultados para Water Purification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation in the activation energy for the initial stage of photomineralization of 4-chlorophenol (4-CP), sensitized by Degussa P25 TiO2 was investigated as a function of P-O2 and [4-CP]. A model was developed based on the incorporation of Arrhenius-type functions in a general rate equation for the initial stage of photomineralization. Values of the essential constants in the model were derived from a few simple experiments. Positive, negative and zero apparent activation energies were predicted using the model, and verified experimentally, under moderate reaction conditions. The general applicability of the model is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 coated glass shows excellent stability in the range pH 2-9, however, there is rapid and complete stripping of the TiO2 coating between pH 11 and 12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic principles of the photooxidative mineralization of organic pollutants by O2, sensitized by TiO2, are described. The kinetics of this process as a function of [TiO2], [organic pollutant], [O2], light intensity, temperature, pH, and the type of anion present are discussed, and a general kinetic model is presented. Standard test and demonstration systems for water purification by TiO2 photocatalysis are described and other novel applications of semiconductor photocatalysis are outlined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An overview of the use of semiconductor photocatalysis for water purification is given. The basic principles of semiconductor photocatalysis are described along with the current understanding of the underlying reaction mechanism(s) and how it fits in with the major features of the observed Langmuir-Hinshelwood-type kinetics of pollutant destruction. These features are illustrated based on literature on the destruction of aqueous solutions of 4-chlorophenol as a pollutant, using titanium dioxide as the photocatalyst. The range of organic and inorganic pollutants that can be destroyed by semiconductor photocatalysis are reported and discussed. The basic considerations that need to be made when designing a reactor for semiconductor photocatalysis are considered. These include: the nature of the reactor glass, the type of illumination source, and the nature and type of semiconductor photocatalyst. The key basic photoreactor designs are reported and discussed, including external illumination, annular, and circular photoreactors. Actual designs that have been used for fixed and thin falling film semiconductor photocatalyst reactors are illustrated and their different features discussed. Basic non-concentrating and concentrating solar photoreactors for semiconductor photocatalysis are also reported. The design features of the major commercial photocatalytic reactor systems for water purification are reported and illustrated. Several case studies involving commercial photocatalytic reactors for water purification are reported. An attempt is made briefly to compare the efficacy of semiconductor photocatalysis for water purification with that of other, more popular and prevalent water purification processes. The future of semiconductor photocatalysis as a method of purifying water is considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conventional water purification and disinfection generally involve potentially hazardous substances, some of which known to be carcinogenic in nature. Titanium dioxide photocatalytic processes provide an effective route to destroy hazardous organic contaminants. This present work explores the possibility of the removal of organic pollutants (phenol) by the application of TiO2 based photocatalysts. The production of series of metal ions doped or undoped TiO2 were carried out via a sol–gel method and a wet impregnation method. Undoped TiO2 and Cu doped TiO2 showed considerable phenol degradation. The efficiency of photocatalytic reaction largely depends on the photocatalysts and the methods of preparation the photocatalysts. The doping of Fe, Mn, and humic acid at 1.0 M% via sol–gel methods were detrimental for phenol degradation. The inhibitory effect of initial phenol concentration on initial phenol degradation rate reveals that photocatalytic decomposition of phenol follows pseudo zero order reaction kinetics. A concentration of > 1 g/L TiO2 and Cu doped TiO2 is required for the effective degradation of 50 mg/L of phenol at neutral pH. The rise in OH- at a higher pH values provides more hydroxyl radicals which are beneficial of phenol degradation. However, the competition among phenoxide ion, Cl- and OH- for the limited number of reactive sites on TiO2 will be a negative influence in the generation of hydroxyl radical. The dependence of phenol degradation rate on the light intensity was observed, which also implies that direct sunlight can be a substitute for the UV lamps and that photocatalytic treatment of organic pollutants using this technique shows some promise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current eight published ISO standards associated with semiconductor photocatalysis are considered. These standards cover: (1) air purification (specifically, the removal of NO, acetaldehyde and toluene), (2) water purification (the photobleaching of methylene blue and oxidation of DMSO) (3) self-cleaning surfaces (the removal of oleic acid and subsequent change in water droplet contact angle), (4) photosterilisation (specifically probing the antibacterial action of semiconductor photocatalyst films) and (5) UV light sources for semiconductor photocatalytic ISO work. For each standard, the background is first considered, followed by a brief discussion of the standard particulars and concluding in a discussion of the pros and cons of the standard, with often recommendations for their improvement. Other possible standards for the future which would either compliment or enhance the current ones are discussed briefly. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium dioxide coatings have potential applications including photocatalysts for solar assisted hydrogen production, solar water disinfection and self-cleaning windows. Herein, we report the use of suspension plasma spraying (SPS) for the deposition of conformal titanium dioxide coatings. The process utilises a nanoparticle slurry of TiO2 (ca. 6 and 12 nm respectively) in water, which is fed into a high temperature plasma jet (ca. 7000-20 000 K). This facilitated the deposition of adherent coatings of nanostructured titanium dioxide with predominantly anatase crystal structure. In this study, suspensions of nano-titanium dioxide, made via continuous hydrothermal flow synthesis (CHFS), were used directly as a feedstock for the SPS process. Coatings were produced by varying the feedstock crystallite size, spray distance and plasma conditions. The coatings produced exhibited ca. 90-100% anatase phase content with the remainder being rutile (demonstrated by XRD). Phase distribution was homogenous throughout the coatings as determined by micro-Raman spectroscopy. The coatings had a granular surface, with a high specific surface area and consisted of densely packed agglomerates interspersed with some melted material. All of the coatings were shown to be photoactive by means of a sacrificial hydrogen evolution test under UV radiation and compared favourably with reported values for CVD coatings and compressed discs of P25.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A wide range of organic pollutants can be destroyed by semiconductor photocatalysis using titania. The purification of water and air contaminated with organic pollutants has been investigated by semiconductor photocatalysis for many years and in attempts to improve the purification rate platinum and palladium have been deposited, usually as fine particles, on the titania surface. Such deposits are expected to improve the rate of reduction of oxygen and so reduce the probability of electron-hole recombination and increase the overall rate of the reaction. The effectiveness of the deposits is reviewed here and appears very variable with reported rate enhancement factors ranging from 8 to 0.1. Semiconductor photocatalysis can be used to purify air (at temperatures > 100 degrees C) and Pt deposits can markedly improve the overall rate of mineralisation. However, volatile organic compounds containing an heteroatom can deactivate the photocatalyst completely and irreversibly. Factors contributing to the success of the processes are considered. The use of chloro-Pt(IV)-titania and other chloro-platinum group metals-titania complexes as possible visible light sensitisers for water and air purification is briefly reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pectinase was identified and isolated from a commercial Aspergillus niger pectinase preparation. The crude enzyme preparation, which was prepared by precipitation of the water extract of the culture of A. niger with ammonium sulfate, was further fractionated by three steps of chromatography, i. e., cation exchange, hydrophobic interaction and onion exchange, to obtain an electrophoretically homogeneous pectinase. The molecular weight of the purified enzyme was estimated by SDS-PAGE to be about 40.4 kDa under both nonreducing and reducing conditions, with the optimum pH at 5.0 and the optimum temperature at 36C. The enzyme was stable at temperatures below 35C. The partial N-terminal ammo acid sequence data analysis of the first 19 amina acids of the obtained pectinase revealed 94.7% and 89.5% homology with two reported pectinases from A. niger.