19 resultados para Warm Asphalt Binder,SBS,Dynamic Shear Rheometer,Rotational Viscometer,Equiviscosità,RTFOT,FTIR
Resumo:
Purpose Previously, it has been reported that molecular mobility determines the rate of molecular approach to crystal surfaces, while entropy relates to the probability of that approaching molecule having the desirable configuration for further growth of the existing crystal; and the free energy dictates the probability of that molecule not returning to the liquid phase1. If we plot the crystal growth rate and viscosity of a supercooled liquid in a log-log format, the relationship between the two is linear, indicating the influence viscosity has upon crystal growth rate. However, such approximation has been derived from pure drug compounds and it is apparent that further understanding of crystallization from drug-polymer solid dispersion is required in order to stabilise drugs embedded within amorphous polymeric solid dispersions. Methods Mixtures of felodipine and polymer (HPMCAS-HF, PVPK15 and Soluplus®) at specified compositions were prepared using a Restch MM200 ball mill. To examine crystal growth within amorphous solid dispersions, samples were prepared by melting 5-10 mg of ball milled mixture at 150°C for 3-5 minutes on a glass slip pre-cleaned with methanol and acetone. All prepared samples were confirmed to be crystal free by visual observation using a polarised light microscope (Olympus BX50). Prepared samples were stored at 0% RH (P2O5), inside desiccators, maintained in ovens at 80°C. For the dynamic viscosity measurement, approximately 100-200mg ball milled mixture was heated on the base plate of a rotational rheometer at 150°C for 5 minutes and the top plate was lowered to a defined gap to form a good contact with the material. The sandwiched amorphous material was heated to 80°C and the viscosity was measured. Results The equation was used to probe the correlation of viscosity to crystal growth rate. In comparison to the value of xi in log-log equation reported from pure drug compound, a value of 1.63 was obtained for FD-polymer solid dispersions irrespective of the polymer involved. ∝ Conclusion The high xi value suggests stronger viscosity dependence may exist for amorphous FD once incorporated with amorphous polymer.
Resumo:
A coherent superposition of rotational states in D2 has been excited by nonresonant, ultrafast (12 fs), intense (2×1014 W cm-2) 800 nm laser pulses, leading to impulsive dynamic alignment. Field-free evolution of this rotational wave packet has been mapped to high temporal resolution by a time-delayed pulse, initiating rapid double ionization, which is highly sensitive to the angle of orientation of the molecular axis with respect to the polarization direction, . The detailed fractional revivals of the neutral D2 wave packet as a function of and evolution time have been observed and modeled theoretically.
Resumo:
Extreme states of matter such as Warm Dense Matter “WDM” and Dense Strongly Coupled Plasmas “DSCP” play a key role in many high energy density experiments, however creating WDM and DSCP in a manner that can be quantified is not readily feasible. In this paper, isochoric heating of matter by intense heavy ion beams in spherical symmetry is investigated for WDM and DSCP research: The heating times are long (100 ns), the samples are macroscopically large (mm-size) and the symmetry is advantageous for diagnostic purposes. A dynamic confinement scheme in spherical symmetry is proposed which allows even ion beam heating times that are long on the hydrodynamic time scale of the target response. A particular selection of low Z-target tamper and x-ray probe radiation parameters allows to identify the x-ray scattering from the target material and use it for independent charge state measurements Z* of the material under study.
Resumo:
The relationship between microstructure and deformation and damage behaviour during dynamic compression in Ti-3Al-5Mo-5V alloy has been studied using several experimental techniques, including optical microscopy, scanning electron microscopy and microhardness measurements. It was found that the deformation behaviour during dynamic compression was closely related to deformation parameters. After dynamic deformation, the deformation shear band that formed in the titanium alloy had microhardness similar to that of the matrix. However, the microhardness of the white shear band was much higher than the matrix microhardness. The effects of deformation parameters, including deformation rate and deformation degree, on deformation localisation were investigated. Based on the results from the present work, the microstructure and deformation processing parameters can be optimised. In addition, treatment methods after dynamic compression were explored to restore alloy properties. Using post-deformation heat treatment, the microstructure and property inhomogeneity caused by shear bands could be largely removed.
Resumo:
Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This work describes a novel method of producing multicomponent fertiliser granules using high shear granulation. The granulation process was optimised using the response surface methodology technique. The variables used in the optimisation process include granulation time, batch size, impeller speed and binder concentration. Granulation time, binder concentration and interaction between the batch size and granulation time were found to be the main factors affecting the granule median size. The product yield is mainly influenced by granulation time and binder concentration. The interaction between the impeller speed and batch size also have a significant influence on the product yield. Product yield (2-4 mm) of approximately 60% could be obtained with high sphericity and granule strength (> 0.5 MPa). A low product recycle ratio of about 2:3 can be obtained at the optimised process conditions, compared to typical recycle rations of 6:1 which are obtained in typical fertiliser plants. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Generally, the solid and liquid fractions (digestate) from Anaerobic Digestion (AD) energy production are considered as waste. This has a negative impact on the sustainability of AD processes because of the financial outlay required to treat digestate before being discharged into municipal water treatment plants or natural water bodies. The main aim of this research was to investigate feasibility of producing an organic fertiliser using anaerobic digestate and limestone powders as the raw materials employing a high shear granulation process. Two-level factorial experimental design was used to determine the influence of granulation process variables on, the strength, resistance to attrition and yield of the granules. It was concluded from the study that it is technically feasible to produce organic fertiliser granules of acceptable strength and product yield. Increasing the liquid-to-solid ratio during granulation leads to increased granule strength and better product yield. Although the strength of the granules produced was lower than typical strength of commercial synthetic fertiliser granules (about 5 to 7. MPa), this could be improved by mixing the digestate with a polymeric binder or coating the particles post granulation. © 2012 Elsevier B.V.
Resumo:
Design of small mixer impellers is not tailored for granulation as they are designed for a wide range of processes. The Kenwood KM070 was employed as a standard apparatus to undertake this investigation. Five different impeller designs were used, possessing different shapes and surface areas. The aim of this research was to evaluate the performances of these impellers to provide
guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as the binder.
The efficacy of respective granulates was measured by adding an optically
sensitive tracer.This was used to determine powder concentrations
within various regions of the granulator. It was found that impeller design influenced the homogeneity of the granules; and therefore can affect final product performance.
Resumo:
Purpose: In this study the Octavius detector 729 ionization chamber (IC) array with the Octavius 4D phantom was characterized for flattening filter (FF) and flattening filter free (FFF) static and rotational beams. The device was assessed for verification with FF and FFF RapidArc treatment plans.
Methods: The response of the detectors to field size, dose linearity, and dose rate were assessed for 6 MV FF beams and also 6 and 10 MV FFF beams. Dosimetric and mechanical accuracy of the detector array within the Octavius 4D rotational phantom was evaluated against measurements made using semiflex and pinpoint ionization chambers, and radiochromic film. Verification FF and FFF RapidArc plans were assessed using a gamma function with 3%/3 mm tolerances and 2%/2 mm tolerances and further analysis of these plans was undertaken using film and a second detector array with higher spatial resolution.
Results: A warm-up dose of >6 Gy was required for detector stability. Dose-rate measurements were stable across a range from 0.26 to 15 Gy/min and dose response was linear, although the device overestimated small doses compared with pinpoint ionization chamber measurements. Output factors agreed with ionization chamber measurements to within 0.6% for square fields of side between 3 and 25 cm and within 1.2% for 2 x 2 cm(2) fields. The Octavius 4D phantom was found to be consistent with measurements made with radiochromic film, where the gantry angle was found to be within 0.4. of that expected during rotational deliveries. RapidArc FF and FFF beams were found to have an accuracy of >97.9% and >90% of pixels passing 3%/3 mm and 2%/2 mm, respectively. Detector spatial resolution was observed to be a factor in determining the accurate delivery of each plan, particularly at steep dose gradients. This was confirmed using data from a second detector array with higher spatial resolution and with radiochromic film.
Conclusions: The Octavius 4D phantom with associated Octavius detector 729 ionization chamber array is a dosimetrically and mechanically stable device for pretreatment verification of FF and FFF RapidArc treatments. Further improvements may be possible through use of a detector array with higher spatial resolution (detector size and/or detector spacing). (C) 2013 American Association of Physicists in Medicine.
Resumo:
Impeller speed is one of the most crucial process variables that affect the properties of the granules produced in a high-shear granulator. Several reports can be found in literature that discuss the influence of impeller speed on the granules size. For instance some researchers like Knight report an increase of granule size with impeller speed [1] and [2], while others (Scheaefer et al. and Ramaker et al.) observed a decrease of granules size with increasing impeller speed [3] and [4]. However there is limited work reported in literature on the effect of the impeller speed on the mechanical properties of granules. Mechanical properties are important as they affect the performance of the granules on the other downstream process such as transportation and handling. The work reported here serves to address the missing in knowledge gap regarding the influence of impeller speed on mechanical properties granules. How the granulation system responds to the changes in the impeller speeds depends on binder that is used in the process. For this reason the two extreme cases, of a low viscosity binder system and high viscosity binder system are considered in this research. For low viscosity binder system it was observed that the granule size decreased with increasing impeller speed whilst for the high viscosity binder system the opposite was observed by Knight [1]. The granule strength, the Young's modulus and yield strength of the high viscosity granules increased with increasing impeller speed where as the opposite trends were observed for the low viscosity binder granules.
Resumo:
The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities. The overall aim of the project was to obtain a granular product in the size range of 2 to 4. mm. The two powders were granulated in different proportions using carboxymethylcellulose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of teawaste on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation. An increase in the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to maintain the desired product yield.
Resumo:
The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties. © 2011 American Institute of Physics.
Resumo:
Small mixer impeller design is not tailored for granulation because impellers are intended for a wide range of processes. The aim of this research was to evaluate the performances of several impellers to provide guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as a binder. A Kenwood KM070 mixer was used as a standard apparatus and five impeller designs with different shapes and surface areas were used. The efficacy of granulate formation was measured by adding an optically sensitive tracer to determine variations in active ingredient content across random samples of granules from the same size classes. It was found that impeller design influenced the homogeneity of the granules and therefore can affect final product performance. The variation in active ingredient content across granules of differing size was also investigated. The results show that small granules were more potent than larger granules.