208 resultados para Wakefield, DIck
Resumo:
Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.
Resumo:
We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeVover millimeter length scales. By adding a second gas target behind the initial LWFAstage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matched to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. Its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.
Resumo:
Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions.
Resumo:
With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.
Resumo:
In its freshwater amphipod host Gammarus duebeni celticus, the microsporidian parasite Pleistophora mulleri showed 23% transmission efficiency when uninfected individuals were fed infected tissue, but 0% transmission by water-borne and coprophagous routes. Cannibalism between unparasitised and parasitised individuals was significantly in favour of the former (37% compared to 0%). In addition, cannibalism between parasitised individuals was significantly higher than between unparasitised individuals (27% compared to 0%). Thus, parasitised individuals were more likely to be cannibalised by both unparasitised and parasitised individuals. We discuss the conflicting selective forces within this host/parasite relationship, the implications of parasite mediated cannibalism for host population structure and the impacts this may have on the wider aquatic community.
Resumo:
1. In a series of laboratory experiments, we assessed the predatory nature of the native Irish amphipod, Gammarus duebeni celticus, and the introduced G. pulex, towards the mayfly nymph Baetis rhodani. We also investigated alterations in microhabitat use and drift behaviour of B. rhodani in the presence of Gammarus, and indirect predatory interactions with juvenile Atlantic salmon, Salmo salar. 2. In trials with single predators and prey, B. rhodani survival was significantly lower when Gammarus were free to interact with nymphs as than when Gammarus were isolated from them. The invader G. pulex reduced the survival of B. rhodani more rapidly than did the native G. d. celticus. Both Gammarus spp. were active predators. 3. In `patch' experiments, B. rhodani survival was significantly lower both when G. pulex and G. d. celticus were present, although the effect of the two Gammarus species did not differ. Again, active predation of nymphs by Gammarus was observed. Significantly more nymphs occurred on the top and sides of a tile, and per capita drifts were significantly higher, when Gammarus were present. Baetis rhodani per capita drift was also significantly higher in the presence of the introduced G. pulex than with the native G. d. celticus. 4. Gammarus facilitated predation by salmon parr of B. rhodani by significantly increasing fish–nymph encounters on exposed gravel and in the drift. There were no differential effects of the two Gammarus spp. on fish –B. rhodani encounters or consumption. 5. We conclude that Gammarus as a predator can have lethal, nonlethal, direct and indirect effects in freshwaters. We stress the need for recognition of this predatory role when assigning Gammarus spp. to a `Functional Feeding Group'.
Resumo:
Experimental investigations of the late-time ion structures formed in the wake of an ultrashort, intense laser pulse propagating in a tenuous plasma have been performed using the proton imaging technique. The pattern found in the wake of the laser pulse shows unexpectedly regular modulations inside a long, finite width channel. On the basis of extensive particle in cell simulations of the plasma evolution in the wake of the pulse, we interpret this pattern as due to ion modulations developed during a two-stream instability excited by the return electric current generated by the wakefield.