4 resultados para WHR
Resumo:
Objective: The incidence of oesophageal adenocarcinoma (EAC) has increased rapidly over the past 40 years and accumulating evidence suggests that obesity, as measured by body mass index (BMI), is a major risk factor. It remains unclear whether abdominal obesity is associated with EAC and gastric adenocarcinoma.
Design: Cox proportional hazards regression was used to examine associations between overall and abdominal obesity with EAC and gastric adenocarcinoma among 218 854 participants in the prospective NIHeAARP cohort.
Results: 253 incident EAC, 191 gastric cardia adenocarcinomas and 125 gastric non-cardia adenocarcinomas accrued to the cohort. Overall obesity (BMI) was positively associated with EAC and gastric
cardia adenocarcinoma risk (highest ($35 kg/m2) vs referent (18.5e<25 kg/m2); HR 2.11, 95% CI 1.09 to 4.09 and HR 3.67, 95% CI 2.00 to 6.71, respectively). Waist circumference was also positively associated with EAC and gastric cardia adenocarcinoma risk (highest vs referent; HR 2.01, 95% CI 1.35 to 3.00 and HR 2.22, 95% CI 1.43 to 3.47, respectively), whereas waist-to-hip ratio (WHR) was positively associated with EAC risk only (highest vs referent; HR 1.81, 95% CI 1.24 to 2.64) and persisted in patients with normal BMI (18.5e<25 kg/m2). Mutual adjustment of WHR and BMI attenuated
both, but did not eliminate the positive associations for either with risk of EAC. In contrast, the majority of the anthropometric variables were not associated with adenocarcinomas of the gastric non-cardia.
Conclusion Overall obesity was associated with a higher risk of EAC and gastric cardia adenocarcinoma, whereas abdominal obesity was found to be associated with increased EAC risk; even in people with normal BMI
Resumo:
This paper presents the rational for the selection of fluids for use in a model based study of sub and supercritical Waste Heat Recovery (WHR) Organic Rankine Cycle (ORC). The study focuses on multiple vehicle heat sources and the potential of WHR ORC’s for its conversion into useful work. The work presented on fluid selection is generally applicable to any waste heat recovery system, either stationary or mobile and, with careful consideration, is also applicable to single heat sources. The fluid selection process presented reduces the number of potential fluids from over one hundred to a group of under twenty fluids for further refinement in a model based WHR ORC performance study. The selection process uses engineering judgement, legislation and, where applicable, health and safety as fluid selection or de-selection criteria. This paper also investigates and discusses the properties of specific ORC fluids with regard to their impact on the theoretical potential for delivering efficient WHR ORC work output. The paper concludes by looking at potential temperature and pressure WHR ORC limits with regard to fluid properties thereby assisting with the generation of WHR ORC simulation boundary conditions.
Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique
Resumo:
The evaporator is an important component in the Organic Rankine Cycle (ORC)-based Waste Heat Recovery (WHR) system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.
Resumo:
The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.