97 resultados para W-183
Resumo:
Self-compacting concrete (SCC) is generally designed with a relatively higher content of finer, which includes cement, and dosage of superplasticizer than the conventional concrete. The design of the current SCC leads to high compressive strength, which is already used in special applications, where the high cost of materials can be tolerated. Using SCC, which eliminates the need for vibration, leads to increased speed of casting and thus reduces labour requirement, energy consumption, construction time, and cost of equipment. In order to obtain and gain maximum benefit from SCC it has to be used for wider applications. The cost of materials will be decreased by reducing the cement content and using a minimum amount of admixtures. This paper reviews statistical models obtained from a factorial design which was carried out to determine the influence of four key parameters on filling ability, passing ability, segregation and compressive strength. These parameters are important for the successful development of medium strength self-compacting concrete (MS-SCC). The parameters considered in the study were the contents of cement and pulverised fuel ash (PFA), water-to-powder ratio (W/P), and dosage of superplasticizer (SP). The responses of the derived statistical models are slump flow, fluidity loss, rheological parameters, Orimet time, V-funnel time, L-box, JRing combined to Orimet, JRing combined to cone, fresh segregation, and compressive strength at 7, 28 and 90 days. The models are valid for mixes made with 0.38 to 0.72 W/P ratio, 60 to 216 kg/m3 of cement content, 183 to 317 kg/m3 of PFA and 0 to 1% of SP, by mass of powder. The utility of such models to optimize concrete mixes to achieve good balance between filling ability, passing ability, segregation, compressive strength, and cost is discussed. Examples highlighting the usefulness of the models are presented using isoresponse surfaces to demonstrate single and coupled effects of mix parameters on slump flow, loss of fluidity, flow resistance, segregation, JRing combined to Orimet, and compressive strength at 7 and 28 days. Cost analysis is carried out to show trade-offs between cost of materials and specified consistency levels and compressive strength at 7 and 28 days that can be used to identify economic mixes. The paper establishes the usefulness of the mathematical models as a tool to facilitate the test protocol required to optimise medium strength SCC.
Resumo:
Phytoplankton biomass and rate of production were measured along a transect from 57.54 degreesN to 37.01 degreesN in the northeast Atlantic during July 1996 and at a series of stations over a 7-day period at 37 degreesN 20 degreesW. Surface nutrient concentrations ranged from 4 mu mol l(-1) NO3-, and 0.35 mu mol l(-1) PO43- at 57.54 degreesN to <10 nmol l(-1) NO3- and similar to 10 nmol l(-1) PO43- at 37.01 degreesN. The greatest phytoplankton biomass and production were measured in the vicinity of a frontal system at 50 degreesN, and there was a general decline in total phytoplankton biomass and production to the south of the transect. Production was measured in three size fractions. At the station with the highest chlorophyll concentrations (50.34 degreesN), phytoplankton cells larger than 5 mum dominated the assemblage, accounting for 72% of the chlorophyll concentration (22.9 mg m(-2)) and 51% of primary production (54.1 mmol Cm-2 d(-1)), but picophytoplankton production was also high (43%). At 57 degreesN, carbon fixation by the > 5 mum fraction accounted for 75% of the daily production of 60.75 mmol Cm-2 d(-1). At 37 degreesN, picophytoplankton was the dominant group, accounting for similar to 58% (10 mg m(-2)) of chlorophyll and similar to 64% (46 mmol Cm-2 d(-1)), of primary production. Nitrate, ammonium and phosphate uptake rates also were determined. Although high nitrate uptake rates were measured in the surface water at similar to 50 degreesN, the greatest uptake rates of both depth-integrated nitrate and ammonium were at the south of the transect. At 37 degreesN, a deep euphotic zone was present and light penetrated through the nitracline; total nitrate uptake was enhanced because of assimilation at the base of the euphotic zone. As a consequence, high values of depth-integrated f-ratio were measured in the oligotrophic waters at the south of the transect. Phosphate was predominantly incorporated into the picoplankton fraction, which included heterotrophic and autotrophic components, at all stations and a significant proportion of phosphate uptake occurred in the dark. The C:N:P assimilation ratios were variable throughout the region; phosphate uptake was generally greater than would be expected if nutrient assimilation were in proportion to the Redfield ratio. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
For many decades it has been assumed that an adsorbate centered above a metal surface and with a net negative charge should increase the work function of the surface. However, despite their electronegativity, N adatoms on W{100} cause a significant work function decrease. Here we present a resolution of this anomaly. Using density functional theory, we demonstrate that while the N atom carries a negative charge, of overriding importance is a reduction in the surface overspill electron density into the vacuum, when that charge is engaged in bonding to the adatom. This novel interpretation is fundamentally important in the general understanding of work function changes induced by atomic adsorbates.