48 resultados para Vossius, Isaac, 1618-1689.
Resumo:
We present Ca II K (lambda(air) = 3933.661 angstrom) interstellar observations towards 20 early-type stars, to place lower distance limits to intermediate- and high-velocity clouds (IHVCs) in their lines of sight. The spectra are also employed to estimate the Ca abundance in the low-velocity gas towards these objects, when combined with Leiden-Dwingeloo 21-cm HI survey data of spatial resolution 0 degrees.5. Nine of the stars, which lie towards IHVC complexes H, K and gp, were observed with the intermediate dispersion spectrograph on the Isaac Newton Telescope at a resolution R = lambda/Delta lambda of 9000 (similar to 33 km s(-1)) and signal-to-noise ratio (S/N) per pixel of 75-140. A further nine objects were observed with the Utrecht Echelle Spectrograph on the William Herschel Telescope at R = 40 000 (similar to 7.5 km s(-1)) and S/N per pixel of 10-25. Finally, two objects were observed in both Ca II K and Na I D lines using the 2D COUDE on the McDonald 2.7-m telescope at R = 35 000 (similar to 8.5 km s(-1)). The abundance of Ca II K {log(10)(A) = log(10)[N(Ca II K)]-log(10)[N(HI)]} plotted against HI column density for the objects in the current sample with heights above the Galactic plane (z) exceeding 1000 pc is found to obey the Wakker & Mathis (2000) relation. Also, the reduced column density of Ca II K as function of z is consistent with the larger sample taken from Smoker et al. (2003). Higher S/N observations than those previously taken towards HVC complex H stars HD 13256 and HILT 190 reinforce the assertion that this lies at a distance exceeding 4000 pc. No obvious absorption is detected in observations of ALS 10407 and HD 357657 towards IVC complex gp. The latter star has a spectroscopically estimated distance of similar to 2040 pc, although this was derived assuming the star lies on the main sequence and without any reddening correction being applied. Finally, no Ca II K absorption is detected towards two stars along the line of sight to complex K, namely PG 1610+529 and PG 1710+490. The latter is at a distance of similar to 700 pc, hence placing a lower distance limit to this complex, where previously only an upper distance limit of 6800 pc was available.
Resumo:
We report the detection of new transitions of octatetraynyl (C8H) toward the circumstellar envelope IRC +10 216 using data taken with the 100 m Green Bank Telescope (GBT). In addition, we report five features from the Ku, K, and Q bands that have been identified as transitions of the octatetraynyl anion (C8H-). From a rotational temperature diagram and an assumed source size of 30", we find a total C8H column density of 8(3)×10^12 cm-2 and a rotational temperature of ~13 K. From the five detected transitions of C8H-, we find a total C8H- column density of ~2.1×10^12 cm-2 consistent with a rotational temperature of ~34 K for a total C8H/C8H- column density ratio of ~3.8. This observed C8H/C8H- column density ratio is similar to the theoretical prediction of 3.6, while the observed column densities were lower than that predicted by a factor of ~30. This prompted us to reinvestigate the initial conditions of the circumstellar envelope (CSE) model. The new model results are presented, and they more closely match the C8H and C8H- abundances observed with the GBT. Finally, we use the new CSE model results to predict the abundance of decapentaynyl (C10H), and we compare them with the measured upper limit found from the GBT observations.
Resumo:
We present photometry on 23 Jupiter Family Comets (JFCs) observed at large heliocentric distance, primarily using the 2.5-m Isaac Newton Telescope (INT). Snapshot images were taken of 17 comets, of which five were not detected, three were active and nine were unresolved and apparently inactive. These include 103P/Hartley 2, the target of the NASA Deep Impact extended mission, EPOXI. For six comets we obtained time-series photometry and use this to constrain the shape and rotation period of these nuclei. The data are not of sufficient quantity or quality to measure precise rotation periods, but the time-series do allow us to measure accurate effective radii and surface colours. Of the comets observed over an extended period, 40P/Väisälä 1, 47P/Ashbrook-Jackson and P/2004 H2 (Larsen) showed faint activity which limited the study of the nucleus. Light curves for 94P/Russell 4 and 121P/Shoemaker-Holt 2 reveal rotation periods of around 33 and 10h, respectively, although in both cases these are not unique solutions. 94P was observed to have a large range in magnitudes implying that it is one of the most elongated nuclei known, with an axial ratio a/b >= 3. 36P/Whipple was observed at five different epochs, with the INT and ESO's 3.6-m NTT, primarily in an attempt to confirm the preliminary short rotation period apparent in the first data set. The combined data set shows that the rotation period is actually longer than 24h. A measurement of the phase function of 36P's nucleus gives a relatively steep ß = 0.060 +/- 0.019. Finally, we discuss the distribution of surface colours observed in JFC nuclei, and show that it is possible to trace the evolution of colours from the Kuiper Belt Object (KBO) population to the JFC population by applying a `dereddening' function to the KBO colour distribution.