7 resultados para Vortex-Induced Vibrations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an experimental investigation into the effect of restricting the vortex-induced vibrations of a spring-mounted rigid cylinder by means of stiff mechanical endstops. Cases of both asymmetric and symmetric restraint are investigated. Results show that limiting the amplitude of the vibrations strongly affects the dynamics of the cylinder, particularly when the offset is small. Fluid-structure interaction is profoundly affected, and the well-known modes of vortex shedding observed with a linear elastic system are modified or absent. There is no evidence of lock-in, and the dominant impact frequency corresponds to a constant Strouhal number of 0.18. The presence of an endstop on one side of the motion can lead to large increases in displacements in the opposite direction. Attention is also given to the nature of the developing chaotic motion, and to impact velocities, which in single-sided impacts approach the maximum velocity of a cylinder with linear compliance undergoing VIV at lock-in. With symmetrical endstops, impact velocities were about one-half of this. Lift coefficients are computed from an analysis of the cylinder’s motion between impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is intended to investigate the validity of the stability diagram (SD) aided multivariate autoregressive (MAR) analysis for identifying modal parameters of a real truss bridge. The MAR models are adopted to fit the time series of the dynamic accelerations recorded from a number of observation points on the bridge; then the modal parameters are extracted from the MAR model coefficient matrix. The SD is adopted to determine statistically dominant modes. In plotting the SD, a number of stability criteria are further adopted for filtering out those modes with unstable modal parameters. By the present method, the first five modal frequencies and mode shapes are identified with very high precision, while the damping ratios are identified with high precision for the 1st mode but with poorer precision for higher modes. Moreover, the ability of the SD in selecting structural modes without getting involved in any model-order optimization problem is highlighted through a comparison study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study discusses structural damage diagnosis of real steel truss bridges by measuring trafficinduced vibration of bridges and utilizing a damage indicator derived from linear system parameters of a time series model. On-site damage experiments were carried out on real steel truss bridges. Artificial damage was applied to the bridge by severing a truss member with a cutting machine.Vehicle-induced vibrations of the bridges before and after applying damagewere measured and used in structural damage diagnosis of the bridges. Changes in the damage indicator are detected by Mahalanobis-Taguchi system (MTS) which is one of multivariate outlier analyses. The damage indicator and outlier detection was successfully applied to detect anomalies in the steel truss bridges utilizing vehicle-induced vibrations. Observations through this study demonstrate feasibility of the proposed approach for real world applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic consolidation (UC) uses high frequency (20-40KHz) mechanical vibrations to produce a solid-state metallurgical bond (weld) between metal foils. UC as a novel layered manufacturing technique is used in this research to embed reinforcing members such as silicon carbide fibers into the aluminium alloy 6061's matrices. It is known that UC induce volume and surface effect in the material it is acting on. Both effects are employed in embedding active/passive elements in the metal matrix. Whilst the process and the two effects are used and identified at macro level, what is happening at micro level is unknown and hardly studied. In this research we are investigating the phenomena occurring in the microstructure of the parts during UC process to obtain better understanding about how and why the process works. In this research, high-resolution electron backscatter diffraction is used to study the effects of the UC process on the evolution of microstructure in AA6061 with and without fibre elements. The inverse pole figures (IPF), pole figures (PF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analysed to find the effect of ultrasonic vibration and embedding fibre on the microstructure and texture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Additional plastic flow occurs around the fibre which leads to the fibre embedding. © 2008 Materials Research Society.