86 resultados para Virgilio Maron, Publio, 70-19 a. C.
Resumo:
The new Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2011 document recommends a combined assessment of chronic obstructive pulmonary disease (COPD) based on current symptoms and future risk.
A large database of primary-care COPD patients across the UK was used to determine COPD distribution and characteristics according to the new GOLD classification. 80 general practices provided patients with a Read code diagnosis of COPD. Electronic and hand searches of patient medical records were undertaken, optimising data capture.
Data for 9219 COPD patients were collected. For the 6283 patients with both forced expiratory volume in 1 s (FEV1) and modified Medical Research Council scores (mean¡SD age 69.2¡10.6 years, body mass index 27.3¡6.2 kg?m-2), GOLD 2011 group distributions were: A (low risk and fewer symptoms) 36.1%, B (low risk and more symptoms) 19.1%, C (high risk and fewer symptoms) 19.6% and D (high risk and more symptoms) 25.3%. This is in contrast with GOLD 2007 stage classification: I (mild) 17.1%, II (moderate) 52.2%, III (severe) 25.5% and IV (very severe) 5.2%. 20% of patients with FEV1 o50% predicted had more than two exacerbations in the previous 12 months. 70% of patients with FEV1 ,50% pred had fewer than two exacerbations in the previous 12 months.
This database, representative of UK primary-care COPD patients, identified greater proportions of patients in the mildest and most severe categories upon comparing 2011 versus 2007 GOLD classifications. Discordance between airflow limitation severity and exacerbation risk was observed.
Resumo:
The dielectric properties of pharmaceutical powder-(paracetamol, aspirin, lactose, maize starch, adipic acid) solvent (water) mixtures were measured at 2,450 MHz at a range of moisture contents (0-1.0 kg kg(-1), dry basis) and temperatures (20-70 A degrees C). The dielectric constant (epsilon'), loss factor (epsilon aEuro(3)) and penetration depth (d (p)) were found to be dependent on frequency, moisture content, temperature and powder type. For powder-water mixtures, a linear increase in the dielectric properties with moisture content was observed, whilst the temperature dependence was of quadratic form. The penetration depth was also significantly affected by temperature and moisture content. Although, epsilon aEuro(3) also increased with increasing temperature, variation with moisture content was temperature dependent. This information on dielectric properties is essential for mathematical description of the pharmaceutical product temperature history during microwave heating and for the design of microwave drying equipment.
Resumo:
Soils and saprolites developed from interbedded shales and limestones of the Conasauga Group are widespread in the Valley and Ridge Province of East Tennessee. Thin sections from four soil profiles were examined by petrographic and scanning electron microscopy including backscatter electron and energy-dispersive X-ray analyses. Iron and manganese released by weathering had migrated differentially downward and precipitated as crystalline and noncrystalline oxides. Oxides were observed as nodules, granular particulates, pore fillings, and coatings on other minerals, packing voids, vesicles, channels, and chambers. Iron oxides formed predominantly as coatings on packing-void walls and on laminated clays in vesicles and channels. Manganese oxides occurred as an early replacement phase of packing voids and of fracture-filling carbonate minerals. Iron oxides were dominant in moderately well-drained and oxidized horizons of the soil solum, whereas manganese oxides were abundant in the oxidized and moderately leached saprolite zone where the water table fluctuates seasonally. Therefore, a manganese enrichment zone, on a bulk soil basis, occurred generally below the iron oxide zone in the soil profile. Such differential migration and accumulation of iron and manganese have been controlled by localized soil microenvironments. Micromorphologic features observed in this study are important in land-use evaluation for hazardous waste disposal. © 1990.
Resumo:
This study examines the impact of ambient temperature on emotional well-being in the U.S. population aged 18+. The U.S. is an interesting test case because of its resources, technology and variation in climate across different areas, which also allows us to examine whether adaptation to different climates could weaken or even eliminate the impact of heat on well-being. Using survey responses from 1.9 million Americans over the period from 2008 to 2013, we estimate the effect of temperature on well-being from exogenous day-to-day temperature variation within respondents’ area of residence and test whether this effect varies across areas with different climates. We find that increasing temperatures significantly reduce well-being. Compared to average daily temperatures in the 50–60 °F (10–16 °C) range, temperatures above 70 °F (21 °C) reduce positive emotions (e.g. joy, happiness), increase negative emotions (e.g. stress, anger), and increase fatigue (feeling tired, low energy). These effects are particularly strong among less educated and older Americans. However, there is no consistent evidence that heat effects on well-being differ across areas with mild and hot summers, suggesting limited variation in heat adaptation.
Resumo:
A novel, colorimetric, temperature-activated humidity indicator is presented, with a colour change based on the semi-reversible aggregation of thiazine dyes (esp. methylene blue, MB) encapsulated within the polymer, hydroxypropyl cellulose (HPC). The initially purple MB/HPC film is activated by heat treatment at 370 °C for 4 s, at which point the film (with a colour associated with a highly aggregated form of MB; λmax = 530 nm) becomes blue (indicating the presence of monomeric and dimeric MB; i.e. with λmax = 665; 605 nm respectively). The blue, heat-treated MB/HPC films respond to an ambient environment with a relative humidity (RH) exceeding 70% at 21 °C within seconds, returning to their initial purple colour. This colour change is irreversible until the film is heat-treated once more. When exposed to a lower RH of up to ca. 47%, the film is stable in its blue form. In contrast, a MB/HPC film treated only at 220 °C for 15 s also turns a blue colour and responds in the same way to a RH value of ca. 70%, but it is unstable at moderate RH 37-50% values, so that it gradually returns to its purple form over a period of approximately 6 hours. The possible use of the high heat-treated MB/HPC humidity indicator in the packaging of goods that cannot tolerate high RH, such as dry foods and electronics, is discussed.
Resumo:
Background
Results of several trials of antioxidant use during pregnancy have not shown a reduction in pre-eclampsia, but the eff ect in women with diabetes is unknown. We aimed to assess whether supplementation with vitamins C and E reduced incidence of pre-eclampsia in women with type 1 diabetes.
Methods
We enrolled women from 25 UK antenatal metabolic clinics in a multicentre randomised placebo-controlled trial. Eligibility criteria were type 1 diabetes preceding pregnancy, presentation between 8 weeks’ and 22 weeks’ gestation, singleton pregnancy, and age 16 years or older. Women were randomly allocated in a 1:1 ratio to receive1000 mg vitamin C and 400 IU vitamin E (a-tocopherol) or matched placebo daily until delivery. The randomisation sequence was stratifi ed by centre with balanced blocks of eight patients. All trial personnel and participants were masked to treatment allocation. The primary endpoint was pre-eclampsia, which we defi ned as gestational hypertension with proteinuria. Analysis was by modifi ed intention to treat. This study is registered, ISRCTN27214045.
Findings
Between April, 2003, and June, 2008, 762 women were randomly allocated to treatment groups (379 vitamin supplementation, 383 placebo). The primary endpoint was assessed for 375 women allocated to receive vitamins, and 374 allocated to placebo. Rates of pre-eclampsia did not differ between vitamin (15%, n=57) and placebo (19%, 70)groups (risk ratio 0·81, 95% CI 0·59–1·12). No adverse maternal or neonatal outcomes were reported.
Interpretation
Supplementation with vitamins C and E did not reduce risk of pre-eclampsia in women with type 1 diabetes. However, the possibility that vitamin supplementation might be benefi cial in women with a low antioxidant status at baseline needs further testing.
Resumo:
The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using (19)F nuclear magnetic resonance (NMR) spectroscopy in combination with (14)C radioisotope-detected high-performance liquid chromatography ((14)C-HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. (14)C-HPLC profiles indicated that there were four major biotransformation products, whereas (19)F NMR showed that there were six major fluorine-containing products. We confirmed that 4-fluorobiphen-4'-ol and 4-fluorobiphen-3'-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of our knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.
Resumo:
HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the -helical homodimeric secretory cytokine interferon- (IFN-). We screened solid-phase peptide libraries from human and mouse IFN- to identify DnaK-binding sites. Conserved DnaK-binding sites were identified in the N-terminal half of helix B and in the C-terminal half of helix C, both of which are located at the IFN- dimer interface. Soluble peptides derived from helices B and C bound DnaK with high affinity in competition assays. No DnaK-binding sites were found in the loops connecting the -helices. The helix C DnaK-binding site appears to be conserved in most members of the superfamily of interleukin (IL)-10-related cytokines that comprises, apart from IL-10 and IFN-, a series of recently discovered small secretory proteins, including IL-19, IL-20, IL-22/IL-TIF, IL-24/MDA-7 (melanoma differentiation-associated gene), IL-26/AK155, and a number of viral IL-10 homologs. These cytokines belong to a relatively small group of homodimeric proteins with highly interdigitated interfaces that exhibit the strongly hydrophobic character of the interior core of a single-chain folded domain. We propose that binding of DnaK to helix C in the superfamily of IL-10-related cytokines may constitute the hallmark of a novel conserved regulatory mechanism in which HSP70-like chaperones assist in the formation of a hydrophobic dimeric "folding" interface.
Resumo:
To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH4 CH3 + H and CO C + 0 on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH4 - CH3 + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH4 Ch(3) + H reaction, the dissociation barrier is reduced by similar to0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH3 + H on the flat surfaces and the defects. Second, for the CO C + 0 reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH3 + H reaction, the C + 0 association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.
Resumo:
Thin-film capacitors, with barium strontium titanate (BST) dielectric layers between 7.5 and 950 nm in thickness, were fabricated by pulsed-laser deposition. Both crystallography and cation chemistry were consistent with successful growth of the BST perovskite. At room temperature, all capacitors displayed frequency dispersion such that epsilon (100 kHz)/epsilon (100 Hz) was greater than 0.75. The dielectric constant as a function of thickness was fitted, using the series capacitor model, for BST thicknesses greater than 70 nm. This yielded a large interfacial d(i)/epsilon (i) ratio of 0.40 +/-0.05 nm, implying a highly visible parasitic dead layer within the capacitor structure. Modeled consideration of the dielectric behavior for BST films, whose total thickness was below that of the dead layer, predicted anomalies in the plots of d/epsilon against d at the dead-layer thickness. In the capacitors studied here, no anomaly was observed. Hence, either (i) 7.5 nm is an upper limit for the total dead-layer thickness in the SRO/BST/Au system, or (ii) dielectric collapse is not associated with a distinct interfacial dead layer, and is instead due to a through-film effect. (C) 2001 American Institute of Physics.
Resumo:
Endohedral fullerenes have been proposed for a number of technological uses, for example, as a nanoscale switch, memory bit and as qubits for quantum computation. For these technology applications, it is important to know the ease with which the endohedral atom can be manipulated using an applied electric field. We find that the Buckminsterfullerene (C-60) acts effectively as a small Faraday cage, with only 25% of the field penetrating the interior of the molecule. Thus influencing the atom is difficult, but as a qubit the endohedral atom should be well shielded from environmental electrical noise. We also predict how the field penetration should increase with the fullerene radius. (C) 2004 American Institute of Physics.