13 resultados para Vibrio cholerae


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Members of the genus Cronobacter are causes of rare but severe illness in neonates and preterm infants following the ingestion of contaminated infant formula. Seven species have been described and two of the species genomes were subsequently published. In this study, we performed comparative genomics on eight strains of Cronobacter, including six that we sequenced (representing six of the seven species) and two previously published, closed genomes.

Results: We identified and characterized the features associated with the core and pan genome of the genus Cronobacter in an attempt to understand the evolution of these bacteria and the genetic content of each species. We identified 84 genomic regions that are present in two or more Cronobacter genomes, along with 45 unique genomic regions. Many potentially horizontally transferred genes, such as lysogenic prophages, were also identified. Most notable among these were several type six secretion system gene clusters, transposons that carried tellurium, copper and/or silver resistance genes, and a novel integrative conjugative element.

Conclusions: Cronobacter have diverged into two clusters, one consisting of C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. While several genetic determinants for plant-association and human virulence could be found in the core genome of Cronobacter, the four Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 μM prevents B. subtilis biofilm formation, (3) endogenous norspermidine is present in biofilms at 50-80 μM, and (4) norspermidine prevents biofilm formation by condensing biofilm exopolysaccharide. In contrast, we find that, at concentrations up to 200 μM, exogenous norspermidine promotes biofilm formation. We find that norspermidine is absent in wild-type B. subtilis biofilms at all stages, and higher concentrations of exogenous norspermidine eventually inhibit planktonic growth and biofilm formation in an exopolysaccharide-independent manner. Moreover, orthologs of the V. cholerae norspermidine biosynthetic pathway are absent from B. subtilis, confirming that norspermidine is not physiologically relevant to biofilm function in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine oligotrophic ultramicrobacterium Sphingomonas alaskensis RB2256 has a physiology that is distinctly different from that of typical copiotrophic marine bacteria, such as Vibrio angustum S14. This includes a high level of inherent stress resistance and the absence of starvation-induced stress resistance to hydrogen peroxide. In addition to periods of starvation in the ocean, slow nutrient-limited growth is likely to be encountered by oligotrophic bacteria for substantial periods of time. In this study we examined the effects of growth rate on the resistance of S. alaskensis RB2256 to hydrogen peroxide under carbon or nitrogen limitation conditions in nutrient-limited chemostats. Glucose-limited cultures of S. alaskensis RB2256 at a specific growth rate of 0.02 to 0.13 h(-1) exhibited 10,000-fold-greater viability following 60 min of exposure to 25 mM hydrogen peroxide than tells growing at a rate of 0.14 h(-1) or higher. Growth rate control of stress resistance was found to be specific to carbon and energy limitation in this organism. In contrast, V. angustum S14 did not exhibit growth rate-dependent stress resistance. The dramatic switch in stress resistance that was observed under carbon and energy limitation conditions has not been described previously in bacteria and thus may be a characteristic of the oligotrophic ultramicrobacterium, Catalase activity varied marginally and did not correlate with the growth rate, indicating that hydrogen peroxide breakdown was not the primary mechanism of resistance. More than 1,000 spots were resolved on silver-stained protein gels for cultures growing at rates of 0.026, 0.076, and 0.18 h(-1). Twelve protein spots had intensities that varied by more than twofold between growth rates and hence are likely to be important for growth rate-dependent stress resistance. These studies demonstrated the crucial role that nutrient limitation plays in the physiology of S. alaskensis RB2256, especially under oxidative stress conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Literature data on the toxicity of chlorophenols for three luminescent bacteria (Vibrio fischeri, and the lux-marked Pseudomonas fluorescens 10586s pUCD607 and Burkholderia spp. RASC c2 (Tn4431)) have been analyzed in relation to a set of computed molecular physico-chemical properties. The quantitative structure-toxicity relationships of the compounds in each species showed marked differences when based upon semi-empirical molecular-orbital molecular and atom based properties. For mono-, di- and tri-chlorophenols multiple linear regression analysis of V. fischeri toxicity showed a good correlation with the solvent accessible surface area and the charge on the oxygen atom. This correlation successfully predicted the toxicity of the heavily chlorinated phenols, suggesting in V. fischeri only one overall mechanism is present for all chlorophenols. Good correlations were also found for RASC c2 with molecular properties, such as the surface area and the nucleophilic super-delocalizability of the oxygen. In contrast the best QSTR for P. fluorescens contained the 2nd order connectivity index and ELUMO suggesting a different, more reactive mechanism. Cross-species correlations were examined, and between V. fischeri and RASC c2 the inclusion of the minimum value of the nucleophilic susceptibility on the ring carbons produced good results. Poorer correlations were found with P. fluorescens highlighting the relative similarity of V. fischeri and RASC c2, in contrast to that of P. fluorescens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prokaryotic and ciliate communities of healthy and aquarium White Syndrome (WS)-affected coral fragments were screened using denaturing gradient gel electrophoresis (DGGE). A significant difference (R = 0.907, p < 0.001) in 16S rRNA prokaryotic diversity was found between healthy (H), sloughed tissue (ST), WS-affected (WSU) and antibiotic treated (WST) samples. Although 3 Vibrio spp were found inWS-affected samples, two of these species were eliminated following ampicillin treatment, yet lesions continued to advance, suggesting they play a minor or secondary role in the pathogenesis. The third Vibrio sp increased slightly in relative abundance in diseased samples and was abundant in non-diseased samples. Interestingly, a Tenacibaculum sp showed the greatest increase in relative abundance between healthy and WS-affected samples, demonstrating consistently high abundance across all WS-affected and treated samples, suggesting Tenacibaculum sp could be a more likely candidate for pathogenesis in this instance. In contrast to previous studies bacterial abundance did not vary significantly (ANOVA, F2, 6 = 1.000, p = 0.422) between H, ST, WSU or WST. Antimicrobial activity (assessed on Vibrio harveyi cultures) was limited in both H and WSU samples (8.1% ±8.2 and 8.0% ±2.5, respectively) and did not differ significantly (Kruskal-Wallis, χ2 (2) = 3.842, p = 0.146). A Philaster sp, a Cohnilembus sp and a Pseudokeronopsis sp. were present in all WS-affected samples, but not in healthy samples. The exact role of ciliates in WS is yet to be determined, but it is proposed that they are at least responsible for the neat lesion boundary observed in the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insertion of lux genes, encoding for bioluminescence in naturally bioluminescent marine bacteria, into the genome of Pseudomonas fluorescens resulted in a bioluminescent strain of this terrestrial bacterium. The lux- marked bacterium was used to toxicity test the chlorobenzene series. By correlating chlorobenzenes 50% effective concentration (EC50) values against physiochemical parameters, the physiochemical properties of chlorobenzenes that elicit toxic responses were investigated. The results showed that the more chlorinated the compounds, the more toxic they were to lux-marked P. fluorescens. Furthermore, it was shown that the more symmetrical the compound, the greater its toxicity to P. fluorescens. In general, the toxicity of a chlorobenzene was inversely proportional to its solubility (S) and directly proportional to its lipophilicity (K(ow). By correlating lux- marked P. fluorescens EC50 values, determined for chlorobenzenes, with toxicity values determined using Pimephales promelas (fathead minnow), Cyclotella meneghiniana (diatom), and Vibrio fischeri (marine bacterium), it was apparent that lux-marked P. fluorescens correlated well with freshwater species such as the diatoms and fathead minnow but not with the bioluminescent marine bacterium V. fischeri. The implications of these findings are that a terrestrial bacterium such as P. fluorescens should be used for toxicity testing of soils and freshwaters rather than the marine bacterium V. fischeri.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coast of the Bulgarian Black Sea is a popular summer holiday destination. The Dam of Iskar is the largest artificial dam in Bulgaria, with a capacity of 675 million m3. It is the main source of tap water for the capital Sofia and for irrigating the surrounding valley. There is a close relationship between the quality of aquatic ecosystems and human health as many infections are waterborne. Rapid molecular methods for the analysis of highly pathogenic bacteria have been developed for monitoring quality. Mycobacterial species can be isolated from waste, surface, recreational, ground and tap waters and human pathogenicity of nontuberculose mycobacteria (NTM) is well recognized. The objective of our study was to perform molecular analysis for key-pathogens, with a focus on mycobacteria, in water samples collected from the Black Sea and the Dam of Iskar. In a two year period, 38 water samples were collected-24 from the Dam of Iskar and 14 from the Black Sea coastal zone. Fifty liter water samples were concentrated by ultrafiltration. Molecular analysis for 15 pathogens, including all species of genus Mycobacterium was performed. Our results showed presence of Vibrio spp. in the Black Sea. Rotavirus A was also identified in four samples from the Dam of Iskar. Toxigenic Escherichia coli was present in both locations, based on markers for stx1 and stx2 genes. No detectable amounts of Cryptosporidium were detected in either location using immunomagnetic separation and fluorescence microscopy. Furthermore, mass spectrometry analyses did not detect key cyanobacterial toxins. On the basis of the results obtained we can conclude that for the period 2012-2014 no Mycobacterium species were present in the water samples. During the study period no cases of waterborne infections were reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca2+ indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components. © 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amine transaminases offer an environmentally sustainable synthesis route for the production ofpure chiral amines. However, their catalytic efficiency towards bulky ketone substrates isgreatly limited by steric hindrance and therefore presents a great challenge for industrialsynthetic applications. Hereby we report an example of rational transaminase enzyme design tohelp alleviate these challenges. Starting from the Vibrio fluvialis amine transaminase that has nodetectable catalytic activity towards the bulky aromatic ketone 2-acetylbiphenyl, we employed arational design strategy combining in silico and in vitro studies to engineer the transaminaseenzyme with a minimal number of mutations, achieving an high catalytic activity and highenantioselectivity. We found that by introducing two mutations W57G/R415A detectableenzyme activity was achieved. The rationally designed best variant,W57F/R88H/V153S/K163F/I259M/R415A/V422A, showed an improvement in reaction rateby > 1716-fold towards the bulky ketone under study, producing the corresponding enantiomericpure (S)-amine (ee value of > 99%).