71 resultados para Vibration signal analysis
Resumo:
This study introduces an inexact, but ultra-low power, computing architecture devoted to the embedded analysis of bio-signals. The platform operates at extremely low voltage supply levels to minimise energy consumption. In this scenario, the reliability of static RAM (SRAM) memories cannot be guaranteed when using conventional 6-transistor implementations. While error correction codes and dedicated SRAM implementations can ensure correct operations in this near-threshold regime, they incur in significant area and energy overheads, and should therefore be employed judiciously. Herein, the authors propose a novel scheme to design inexact computing architectures that selectively protects memory regions based on their significance, i.e. their impact on the end-to-end quality of service, as dictated by the bio-signal application characteristics. The authors illustrate their scheme on an industrial benchmark application performing the power spectrum analysis of electrocardiograms. Experimental evidence showcases that a significance-based memory protection approach leads to a small degradation in the output quality with respect to an exact implementation, while resulting in substantial energy gains, both in the memory and the processing subsystem.
Resumo:
Wavelets introduce new classes of basis functions for time-frequency signal analysis and have properties particularly suited to the transient components and discontinuities evident in power system disturbances. Wavelet analysis involves representing signals in terms of simpler, fixed building blocks at different scales and positions. This paper examines the analysis and subsequent compression properties of the discrete wavelet and wavelet packet transforms and evaluates both transforms using an actual power system disturbance from a digital fault recorder. The paper presents comparative compression results using the wavelet and discrete cosine transforms and examines the application of wavelet compression in power monitoring to mitigate against data communications overheads.
Resumo:
Wearable devices performing advanced bio-signal analysis algorithms are aimed to foster a revolution in healthcare provision of chronic cardiac diseases. In this context, energy efficiency is of paramount importance, as long-term monitoring must be ensured while relying on a tiny power source. Operating at a scaled supply voltage, just above the threshold voltage, effectively helps in saving substantial energy, but it makes circuits, and especially memories, more prone to errors, threatening the correct execution of algorithms. The use of error detection and correction codes may help to protect the entire memory content, however it incurs in large area and energy overheads which may not be compatible with the tight energy budgets of wearable systems. To cope with this challenge, in this paper we propose to limit the overhead of traditional schemes by selectively detecting and correcting errors only in data highly impacting the end-to-end quality of service of ultra-low power wearable electrocardiogram (ECG) devices. This partition adopts the protection of either significant words or significant bits of each data element, according to the application characteristics (statistical properties of the data in the application buffers), and its impact in determining the output. The proposed heterogeneous error protection scheme in real ECG signals allows substantial energy savings (11% in wearable devices) compared to state-of-the-art approaches, like ECC, in which the whole memory is protected against errors. At the same time, it also results in negligible output quality degradation in the evaluated power spectrum analysis application of ECG signals.
Resumo:
A system for the identification of power quality violations is proposed. It is a two-stage system that employs the potentials of the wavelet transform and the adaptive neurofuzzy networks. For the first stage, the wavelet multiresolution signal analysis is exploited to denoise and then decompose the monitored signals of the power quality events to extract its detailed information. A new optimal feature-vector is suggested and adopted in learning the neurofuzzy classifier. Thus, the amount of needed training data is extensively reduced. A modified organisation map of the neurofuzzy classifier has significantly improved the diagnosis efficiency. Simulation results confirm the aptness and the capability of the proposed system in power quality violations detection and automatic diagnosis
Resumo:
The problem of recognising targets in non-overlapping clutter using nonlinear N-ary phase filters is addressed. Using mathematical analysis, expressions were derived for an N-ary phase filter and the intensity variance of an optical correlator output. The N-ary phase filter was shown to consist of an infinite sum of harmonic terms whose periodicity was determined by N. For the intensity variance, it was found that under certain conditions the variance was minimised due to a hitherto undiscovered phase quadrature effect. Comparison showed that optimal real filters produced greater SNR values than the continuous phase versions as a consequence of this effect.
Resumo:
Repeated activities used by animals during contests are assumed to act as signals advertising the quality of the sender. However, their exact functions are not well understood and observations fit only a limited set of the predictions made by models of signaling systems. Experimental studies of contest behavior tend to focus on analysis of the rate of signaling, but individual performances may also vary in magnitude. Both of these features can vary between outcomes and within contests. We examined changes in the rate and power of shell rapping during shell fights in hermit crabs. We show that both rate and power decline during the course of the encounter and that the duration of pauses between bouts of shell rapping increases with an index of the total effort put into each bout. This supports the idea that the vigor of shell rapping is regulated by fatigue and could therefore act as a signal of stamina. By examining different interacting components of this complex activity, we gain greater insight into its function than would be achieved by investigating a single aspect in isolation.
Resumo:
This paper introduces the application of linear multivariate statistical techniques, including partial least squares (PLS), canonical correlation analysis (CCA) and reduced rank regression (RRR), into the area of Systems Biology. This new approach aims to extract the important proteins embedded in complex signal transduction pathway models.The analysis is performed on a model of intracellular signalling along the janus-associated kinases/signal transducers and transcription factors (JAK/STAT) and mitogen activated protein kinases (MAPK) signal transduction pathways in interleukin-6 (IL6) stimulated hepatocytes, which produce signal transducer and activator of transcription factor 3 (STAT3).A region of redundancy within the MAPK pathway that does not affect the STAT3 transcription was identified using CCA. This is the core finding of this analysis and cannot be obtained by inspecting the model by eye. In addition, RRR was found to isolate terms that do not significantly contribute to changes in protein concentrations, while the application of PLS does not provide such a detailed picture by virtue of its construction.This analysis has a similar objective to conventional model reduction techniques with the advantage of maintaining the meaning of the states prior to and after the reduction process. A significant model reduction is performed, with a marginal loss in accuracy, offering a more concise model while maintaining the main influencing factors on the STAT3 transcription.The findings offer a deeper understanding of the reaction terms involved, confirm the relevance of several proteins to the production of Acute Phase Proteins and complement existing findings regarding cross-talk between the two signalling pathways.
Resumo:
Spectral signal intensities, especially in 'real-world' applications with nonstandardized sample presentation due to uncontrolled variables/factors, commonly require additional spectral processing to normalize signal intensity in an effective way. In this study, we have demonstrated the complexity of choosing a normalization routine in the presence of multiple spectrally distinct constituents by probing a dataset of Raman spectra. Variation in absolute signal intensity (90.1% of total variance) of the Raman spectra of these complex biological samples swamps the variation in useful signals (9.4% of total variance), degrading its diagnostic and evaluative potential.
Resumo:
While load flow conditions vary with different loads, the small-signal stability of the entire system is closely related with to the locations, capacities and models of loads. In this paper, load impacts with different capacities and models on the small-signal stability are analysed. In the real large-scale power system case, the load sensitivity which denotes the sensitivity of the eigenvalue with respect to the load active power is introduced and applied to rank the loads. The loads with high sensitivity are also considered.
Resumo:
This paper proposes a method to assess the small signal stability of a power system network by selective determination of the modal eigenvalues. This uses an accelerating polynomial transform, designed using approximate eigenvalues
obtained from a wavelet approximation. Application to the IEEE 14 bus network model produced computational savings of 20%,over the QR algorithm.