3 resultados para Veículos flex
Resumo:
In this paper we consider whether the behaviour of the neural circuitry that controls lower limb movements in humans is shaped primarily by the spatiotemporal characteristics of bipedal gait patterns, or by selective pressures that are sensitive to considerations of balance and energetics. During the course of normal locomotion, the full dynamics of the neural circuitry are masked by the inertial properties of the limbs. In the present study, participants executed bipedal movements in conditions in which their feet were either unloaded or subject to additional inertial loads. Two patterns of rhythmic coordination were examined. In the in-phase mode, participants were required to flex their ankles and extend their ankles in synchrony. In the out-of-phase mode, the participants flexed one ankle while extending the other and vice versa. The frequency of movement was increased systematically throughout each experimental trial. All participants were able to maintain both the in-phase and the out-of-phase mode of coordination, to the point at which they could no longer increase their frequency of movement. Transitions between the two modes were not observed, and the stability of the out-of-phase and in-phase modes of coordination was equivalent at all movement frequencies. These findings indicate that, in humans, the behaviour of the neural circuitry underlying coordinated movements of the lower limbs is not constrained strongly by the spatiotemporal symmetries of bipedal gait patterns.
Resumo:
The exponential growth in user and application data entails new means for providing fault tolerance and protection against data loss. High Performance Com- puting (HPC) storage systems, which are at the forefront of handling the data del- uge, typically employ hardware RAID at the backend. However, such solutions are costly, do not ensure end-to-end data integrity, and can become a bottleneck during data reconstruction. In this paper, we design an innovative solution to achieve a flex- ible, fault-tolerant, and high-performance RAID-6 solution for a parallel file system (PFS). Our system utilizes low-cost, strategically placed GPUs — both on the client and server sides — to accelerate parity computation. In contrast to hardware-based approaches, we provide full control over the size, length and location of a RAID array on a per file basis, end-to-end data integrity checking, and parallelization of RAID array reconstruction. We have deployed our system in conjunction with the widely-used Lustre PFS, and show that our approach is feasible and imposes ac- ceptable overhead.