16 resultados para Vascular system injuries


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent electrophysiological studies have suggested that there is a subpopulation of cells in lymphatic vessels which act as pacemakers controlling the characteristic spontaneous contractile activity in this tissue. In this study, electron microscopy and immunohistochemical techniques were used on sheep mesenteric lymphatic vessels to investigate the morphology of the cells comprising the lymphatic wall. The smooth muscle cells were not orientated in circular and longitudinal layers as is seen in the gastrointestinal tract, but were arranged in bundles which interlock and cross over in a basket-weave fashion. Antibodies to Kit and vimentin, which are widely used to label specialised pacemaking cells in the gastrointestinal tract (known as interstitial cells of Cajal), demonstrated the existence of an axially orientated subpopulation of cells lying between the endothelium and the bulk of the smooth muscle. Examination of this area using electron microscopy showed cells which were electron dense compared to the underlying smooth muscle and contained caveolae, Golgi complexes, mitochondria, 10-nm filaments, a well-developed endoplasmic reticulum and a basal lamina. The smooth muscle cells typically contained caveolae, dense bodies, mitochondria, abundant filaments, sER and basal laminae. Cells dispersed for patch-clamp studies were also stained for vimentin and myosin. Myosin-staining cells had the typical spindle appearance of smooth muscle cells whereas the vimentin-positive cells could either be branched or more closely resemble the smooth muscle cells. The present study provides the first morphological evidence that specialised cells exist within the vascular system which have the ultrastructural characteristics of pacemaker cells in other tissues and are vimentin and Kit positive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aspidochirote holothurians found on tropical reef flats feed on particulate deposits which form a variety of substrata. The synaptid holothurian Opheodesoma grisea (Semper) feeds in a similar manner by scraping deposits from the surfaces of sea grasses. Distributional and gut content analyses showed that species partitioning is on the basis of substratum and particle size preference. Scanning electron microscopy revealed that the tentacles of aspidochirotes have a nodular surface while those of O. grisea have a tessellated surface structure. The twelve different species examined were shown to have different tentacular surface textures which bore an apparent relationship with the mean particle sizes selected by the different species. Light microscope studies of tentacle sections confirmed earlier observations on the extent of the water vascular system in aspidochirote and pinnate tentacles. From these observations a functional interpretation is proposed for tentacular operation and the means of particle selection in such holothurians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term impact of dietary carbohydrate type, in particular sucrose, on insulin resistance and the development of diabetes and atherosclerosis is not established. Current guidelines for the healthy population advise restriction of sucrose intake. We investigated the effect of high- versus low-sucrose diet (25 vs. 10%, respectively, of total energy intake) in 13 healthy subjects aged 33 +/- 3 years (mean +/- SE), BMI 26.6 +/- 0.9 kg/m(2), in a randomized crossover design with sequential 6-week dietary interventions separated by a 4-week washout. Weight maintenance, eucaloric diets with identical macronutrient profiles and fiber content were designed. All food was weighed and distributed. Insulin action was assessed using a two-step euglycemic clamp; glycemic profiles were assessed by the continuous glucose monitoring system and vascular compliance by pulse-wave analysis. There was no change in weight across the study. Peripheral glucose uptake and suppression of endogenous glucose production were similar after each diet. Glycemic profiles and measures of vascular compliance did not change. A rise in total and LDL cholesterol was observed. In this study, a high-sucrose intake as part of an eucaloric, weight-maintaining diet had no detrimental effect on insulin sensitivity, glycemic profiles, or measures of vascular compliance in healthy nondiabetic subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few markers distinguish between different dementia types. As dementia affects many body systems outside the central nervous system, we investigated gastrointestinal regulatory peptides as possible disease markers in Alzheimer's Disease (AD) and vascular dementia (VaD). Subjects with mild-to-moderate dementia were diagnosed as probable AD and VaD according to defined criteria. Gastrointestinal peptides were stimulated using a standardized meal test, administered after an overnight fast to 58 dementia patients (40 AD, 18 VaD) and 47 controls matched for age and sex. Blood samples were taken at designated time intervals, and basal and stimulated plasma concentrations of eleven peptides were determined by radio-immunoassay. Results were analysed using the Kruskal-Wallis one-way analysis of variance; the Mann-Whitney U test was used in post hoc analysis where appropriate. There were significant differences in somatostatin levels but in none of the other peptides. Basal somatostatin was significantly increased in VaD compared to controls (p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The effects of equipotent doses of frusemide (10 mg and 100 mg) and bumetanide (250 micrograms and 2.5 mg) upon renal and peripheral vascular responses, urinary prostaglandin excretion, plasma renin activity, angiotensin II and noradrenaline were compared in nine healthy volunteers. 2. Frusemide (10 mg and 100 mg) and bumetanide (2.5 mg) increased renal blood flow acutely compared with placebo but bumetanide (250 micrograms) had no effect. The changes in peripheral vascular responses were not significantly different from placebo. 3. Urinary prostaglandin metabolite excretion was acutely increased by all treatments, with no inter-treatment difference. Plasma renin activity was increased acutely by both doses of frusemide and by bumetanide (2.5 mg) compared with placebo and to bumetanide (250 micrograms). There were no differences between the latter two treatments. Angiotensin II was increased significantly 30 min after frusemide 100 mg and bumetanide 2.5 mg, and by all four treatments at 50 min when compared with placebo. There were no significant differences between either of the low doses or the higher doses. Plasma noradrenaline was unchanged by all treatments. 4. Frusemide 100 mg and bumetanide 2.5 mg have the same effects on the renal vasculature and the renin-angiotensin-prostaglandin system. Under the conditions of this study, frusemide 10 mg had different effects on plasma renin activity than bumetanide 250 micrograms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adrenergic receptors (alpha 2, beta 2), plasma noradrenaline, heart rate and the pressor responsiveness to infused noradrenaline were examined in ten healthy male volunteers before and after 2 weeks of placebo or captopril therapy in a double blind cross-over study. No significant differences in these measurements were observed between the captopril and placebo treated groups. The study shows that in sodium replete normotensive subjects, long-term angiotensin converting enzyme inhibition does not lead to changes in adrenoceptor density. There is also no alteration in plasma noradrenaline levels nor in the pressor responsiveness to infused noradrenaline. These data suggest that the known interaction between the renin-angiotensin system and the sympathetic nervous system observed in animals is probably of little significance in man.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endogenous electric fields (EF) have long been known to influence cell behaviour during development, neural cell tropism, wound healing and cell behaviour generally. The effect is based on short circuiting of electrical potential differences across cell and tissue boundaries generated by ionic segregation. Recent in vitro and in vivo studies have shown that EF regulate not only cell movement but orientation of cells during mitosis, an effect which may underlie shaping of tissues and organs. The molecular basis of this effect is founded on receptor-mediated cell signalling events and alterations in cytoskeletal function as revealed in studies of gene deficient cells. Remarkably, not all cells respond directionally to EF in the same way and this has consequences, for instance, for lens development and vascular remodelling. The physical basis of EF effect may be related to changes induced in 'bound water' at the cell surface, whose organisation in association with trans-membrane proteins (e.g. receptors) is disrupted when EF are generated. Copyright © 2007 S. Karger AG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomarkers are conventionally defined as "biological molecules that represent health and disease states." They typically are measured in readily available body fluids (blood or urine), lie outside the causal pathway, are able to detect subclinical disease, and are used to monitor clinical and subclinical disease burden and response to treatments. Biomarkers can be "direct" endpoints of the disease itself, or "indirect" or surrogate endpoints. New technologies (such as metabolomics, proteomics, genomics) bring a wealth of opportunity to develop new biomarkers. Other new technologies enable the development of nonmolecular, functional, or biophysical tissue-based biomarkers. Diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic ramifications extending far beyond impaired glucose metabolism. Biomarkers may reflect the presence and severity of hyperglycemia (ie, diabetes itself) or the presence and severity of the vascular complications of diabetes. Illustrative examples are considered in this brief review. In blood, hemoglobin A1c (HbA1c) may be considered as a biomarker for the presence and severity of hyperglycemia, implying diabetes or prediabetes, or, over time, as a "biomarker for a risk factor," ie, hyperglycemia as a risk factor for diabetic retinopathy, nephropathy, and other vascular complications of diabetes. In tissues, glycation and oxidative stress resulting from hyperglycemia and dyslipidemia lead to widespread modification of biomolecules by advanced glycation end products (AGEs). Some of these altered species may serve as biomarkers, whereas others may lie in the causal pathway for vascular damage. New noninvasive technologies can detect tissue damage mediated by AGE formation: these include indirect measures such as pulse wave analysis (a marker of vascular dysfunction) and more direct markers such as skin autofluorescence (a marker of long-term accumulation of AGEs). In the future, we can be optimistic that new blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). METHODS: Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. RESULTS: Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. CONCLUSION: These results illustrate the internalization and intracellular trafficking by RVECs of insulin and LDL through highly efficient RME, and they provide evidence for at least two possible fates for the endocytosed ligands. This study outlines a route by which vital macromolecules may cross the inner blood-retinal barrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pupose. To evaluate the relationship between retinal vascular caliber (RVC), iris color and age-related macular degeneration (AMD) in elderly Irish nuns. Methods. Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study were assessed from digital photographs with a standardized protocol using computer-assisted software. Macular images were graded according to the modified Wisconsin age-related maculopathy grading system. Regression models were used to assess associations, adjusting for age, mean arterial blood pressure, body mass index, refraction and fellow RVC. Results. In total, 1122 (91%) participants had gradable retinal images of sufficient quality for vessel assessment (mean age: 76.3 years [range: 56-100 years]). In an unadjusted analysis, we found some support for a previous finding that individuals with blue iris color had narrower retinal venules compared to those with brown iris color (P<0.05) but this was no longer significant after adjustment. AMD status was categorized as no AMD, any AMD and late AMD only. Individuals with any AMD (early or late AMD) had significantly narrower arterioles and venules compared to those with no AMD in an unadjusted analysis but this was no longer significant after adjustment. A non-significant reduced risk of any AMD or late AMD only was observed in association with brown compared to blue iris color, in both unadjusted and adjusted analyses. Conclusions. RVC was not significantly associated with iris color or early/late AMD after adjustment for confounders. A lower but non-significant AMD risk was observed in those with brown compared to blue iris color.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We proposed to exploit hypoxia-inducible factor (HIF)-1alpha overexpression in prostate tumours and use this transcriptional machinery to control the expression of the suicide gene cytosine deaminase (CD) through binding of HIF-1alpha to arrangements of hypoxia response elements. CD is a prodrug activation enzyme, which converts inactive 5-fluorocytosine to active 5-fluorouracil (5-FU), allowing selective killing of vector containing cells.

METHODS: We developed a pair of vectors, containing either five or eight copies of the hypoxia response element (HRE) isolated from the vascular endothelial growth factor (pH5VCD) or glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (pH8GCD) gene, respectively. The kinetics of the hypoxic induction of the vectors and sensitization effects were evaluated in 22Rv1 and DU145 cells in vitro.

RESULTS: The CD protein as selectively detected in lysates of transiently transfected 22Rv1 and DU145 cells following hypoxic exposure. This is the first evidence of GAPDH HREs being used to control a suicide gene therapy strategy. Detectable CD levels were sustained upon reoxygenation and prolonged hypoxic exposures. Hypoxia-induced chemoresistance to 5-FU was overcome in both cell lines treated with this suicide gene therapy approach. Hypoxic transfectants were sensitized to prodrug concentrations that were ten-fold lower than those that are clinically relevant. Moreover, the surviving fraction of reoxygenated transfectants could be further reduced with the concomitant delivery of clinically relevant single radiation doses.

CONCLUSIONS: This strategy thus has the potential to sensitize the hypoxic compartment of prostate tumours and improve the outcome of current therapies.