21 resultados para Vallès, Evarist -- Exhibitions
Resumo:
This paper examines how experiences of the sublime are regulated in the war exhibitions of modern museums. Ambivalence is a key feature of the sublime because subjects are forced to negotiate simultaneous feelings of terror and awe in the face of something unrepresentable like war. This paper analyses how war exhibitions dispel ambivalence by resuscitating a Kantian sublime full of resolution, catharsis and transcendence. In this context, potentially destabilising encounters with horrific objects (e.g. guns, bombs, shrapnel) are neutralised by didactic 'Lessons of War' and celebratory narratives of victory. Using examples from the United States Holocaust Memorial Museum, the Imperial War Museum in London and the Smithsonian Institution, this paper illustrates how conventional war exhibitions reproduce a politics of consensus by carefully managing the experience of the sublime.
Resumo:
Value-at-risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram-Charlier expansion (GCE) augmenting the standard normal distribution with the first four moments, which are allowed to vary over time. In an extensive empirical study, we compare the GCE approach to other models of VaR forecasting and conclude that it provides accurate and robust estimates of the realized VaR. In spite of its simplicity, on our dataset GCE outperforms other estimates that are generated by both constant and time-varying higher-moments models.
Resumo:
We propose two simple evaluation methods for time varying density forecasts of continuous higher dimensional random variables. Both methods are based on the probability integral transformation for unidimensional forecasts. The first method tests multinormal densities and relies on the rotation of the coordinate system. The advantage of the second method is not only its applicability to any continuous distribution but also the evaluation of the forecast accuracy in specific regions of its domain as defined by the user’s interest. We show that the latter property is particularly useful for evaluating a multidimensional generalization of the Value at Risk. In simulations and in an empirical study, we examine the performance of both tests.
Resumo:
We propose a simple and flexible framework for forecasting the joint density of asset returns. The multinormal distribution is augmented with a polynomial in (time-varying) non-central co-moments of assets. We estimate the coefficients of the polynomial via the Method of Moments for a carefully selected set of co-moments. In an extensive empirical study, we compare the proposed model with a range of other models widely used in the literature. Employing a recently proposed as well as standard techniques to evaluate multivariate forecasts, we conclude that the augmented joint density provides highly accurate forecasts of the “negative tail” of the joint distribution.
Resumo:
The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.
Resumo:
The POINT-AGAPE collaboration is currently searching for massive compact halo objects (MACHOs) toward the Andromeda galaxy (M31). The survey aims to exploit the high inclination of the M31 disk, which causes an asymmetry in the spatial distribution of M31 MACHOs. Here, we investigate the effects of halo velocity anisotropy and flattening on the asymmetry signal using simple halo models. For a spherically symmetric and isotropic halo, we find that the underlying pixel lensing rate in far-disk M31 MACHOs is more than 5 times the rate of near-disk events. We find that the asymmetry is further increased by about 30% if the MACHOs occupy radial orbits rather than tangential orbits, but it is substantially reduced if the MACHOs lie in a flattened halo. However, even for halos with a minor- to major-axis ratio of q = 0.3, the number of M31 MACHOs in the far side outnumber those in the near side by a factor of similar to2. There is also a distance asymmetry, in that the events on the far side are typically farther from the major axis. We show that, if this positional information is exploited in addition to number counts, then the number of candidate events required to confirm asymmetry for a range of flattened and anisotropic halo models is achievable, even with significant contamination by variable stars and foreground microlensing events. For pixel lensing surveys that probe a representative portion of the M31 disk, a sample of around 50 candidates is likely to be sufficient to detect asymmetry within spherical halos, even if half the sample is contaminated, or to detect asymmetry in halos as flat as q = 0.3, provided less than a third of the sample comprises contaminants. We also argue that, provided its mass-to-light ratio is less than 100, the recently observed stellar stream around M31 is not problematic for the detection of asymmetry.
Resumo:
We have carried out a survey of the Andromeda galaxy for unresolved microlensing (pixel lensing). We present a subset of four short timescale, high signal-to-noise microlensing candidates found by imposing severe selection criteria: the source flux variation exceeds the flux of an R = 21 magnitude star and the full width at half maximum timescale is less than 25 days. Remarkably, in three out of four cases, we have been able to measure or strongly constrain the Einstein crossing time of the event. One event, which lies projected on the M 31 bulge, is almost certainly due to a stellar lens in the bulge of M 31. The other three candidates can be explained either by stars in M 31 and M 32 or by MACHOs.
Resumo:
We report the discovery of a microlensing candidate projected 2'54
Resumo:
We report the discovery of a short-duration microlensing candidate in the northern field of the POINT-AGAPE pixel lensing survey toward M31. Almost certainly, the source star has been identified on Hubble Space Telescope archival images, allowing us to infer an Einstein crossing time of t(E) = 10.4 days, a maximum magnification of A(max) similar to 18, and a lens-source proper motion mu (rel) > 0.3 mu as day(-1). The event has a projected separation of 8' from the center of M31, beyond the bulk of the stellar lens population. There are three plausible identifications/locations for the lensing object: a massive compact halo object (MACHO) in either M31 or the Milky Way, or a star in the M31 disk. The most probable mass is 0.06 M-. for an M31 MACHO, 0.02 M-. for a Milky Way MACHO, and 0.2 M-. for an M31 stellar lens. While the stellar interpretation is possible, the MACHO interpretation is the most probable for halo fractions above 20%.
Resumo:
POINT-AGAPE is an Angle-French collaboration which is employing the Isaac Newton Telescope (INT) to conduct a pixel-lensing survey towards M31. Pixel lensing is a technique which permits the detection of microlensing against unresolved stellar fields. The survey aims to constrain the stellar population in M31, and also the distribution and nature of massive compact halo objects (MACHOs) in both M31 and the Galaxy.
Resumo:
International exhibitions were greatly responsible for the modernization of western society. The motive for these events was based on the possibility of enhancing the country’s international status abroad. The genesis of world exhibitions came from the conviction that humanity as a whole would improve the continual flow of new practical applications, the development of modern communication techniques and the social need for a medium that could acquaint the general public with changes in technology, economy and society .
Since the first national industrial exhibitions in Paris during the eighteenth century and especially starting from the first Great Exhibition in London’s Hyde Park in 1851 these international events spread steadily all over Europe and the United States, to reach Latin America in the beginnings of the twentieth century . The work of professionals such as Daniel Burnham, Werner Hegemann and Elbert Peets made the relation between exhibitions and urban transformation a much more connected one, setting a precedent for subsequent exhibitions.
In Buenos Aires, the celebration of the centennial of independence from Spain in 1910 had many meanings and repercussions. A series of factors allowed for a moment of change in the city. Official optimism, economical progress, inequality and social conflict made of this a suitable time for transformation. With the organization of the Exposición Internacional the government had, among others, one specific aim: to achieve a network of visual tools to set the feeling of belonging and provide an identity for the mixture of cultures that populated the city of Buenos Aires at the time. Another important objective of the government was to put Buenos Aires at the level of European cities.
Foreign professionals had a great influence in the conceptual and factual shaping of the exhibition and in the subsequent changes caused in the urban condition. The exhibition had an important role in the ways of thinking the city and in the leisure ideas it introduced. The exhibition, as a didactic tool, worked as a precedent for conceiving leisure spaces in the future. Urban and landscape planners such as Joseph Bouvard and Charles Thays were instrumental in great part of the design of the Exhibition, but it was not only the architects and designers who shaped the identity of the fair. Other visitors such as Jules Huret or Georges Clemenceau were responsible for giving the city an international image it did not previously have.
This paper will explore on the one hand the significance of the exhibition of 1910 for the shaping of the city and its image; and on the other hand, the role of foreign professionals and the reach these influences had.