16 resultados para Vacuum gas oil
Resumo:
Colloidal gas aphrons (CGAs) are micron-sized bubbles, which are produced by stirring a dilute surfactant solution at a high speed. In this work, CGAs have been used to clarify oily wastewater by flotation technique. The CGAs sparging rate was a critical factor that governed the efficiency of the process. A model for the determination of the mass transfer coefficient is also developed for the purpose of process design.
Resumo:
The most common mode of deactivation suffered by catalysts fitted to two-stroke engines has traditionally been thermal degradation, or even meltdown, of the washcoat and substrate. The high temperatures experienced by these catalysts are caused by excessively high concentrations of HC and CO in the exhaust gas which are, in turn, caused by a rich AFR and the loss of neat fuel to the exhaust during the scavenging period. The effects of catalyst poisoning due to additives in the oil is often regarded as a secondary, or even negligible, deactivating mechanism in two-stroke catalysts and has therefore received little attention. However, with the introduction of direct in-cylinder fuel injection to some larger versions of this engine, the quantities of HC escaping to the exhaust can be reduced to levels similar to those found on four-stroke gasoline engines. Under these conditions, the effects of poisoning are much more significant to catalyst durability, particularly for crankcase scavenged derivatives which allow considerable quantities of oil to escape into the exhaust in a neat, or partially burned form. In this paper the effects of oil-derived sulphur on catalyst performance are examined using specialised test apparatus. The oil used throughout the study was formulated specifically for a two-stroke engine fitted with direct in-cylinder fuel injection. The sulphur content of this oil was 0.21% by mass and particular attention was paid to the role of this element in the resulting deactivation. The catalyst was also designed for two-stroke applications and contained a high palladium loading of 300g/ft3 (28g/l) to prolong the life of the catalyst. It was found that the sulphur caused permanent deactivation of the CO reaction and increased the light-off temperature by around 40oC after oiling for 60 hours. This deactivation was progressive and led to a reduction in surface area of the washcoat, particularly in the micropores of around 5Å diameter. By using a validated catalyst model the change in surface area of the precious metal was estimated. It was found that the simulated palladium surface area had to be reduced by a factor of around 7.5 to produce the light-off temperature of the deactivated catalyst. Conversely, the light-off temperature of the C3H6 reaction was barely affected by the deactivation.
Resumo:
Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.
Resumo:
The impact of the preparation method on the activity and stability of gold supported on ceria-zirconia low temperature water-gas shift (WGS) catalysts have been investigated. The influence of the gold deposition method, nature of the gold precursor, nature of the washing solution, drying method, Ce: Zr ratio of the support and sulfation of the support have been evaluated. The highest activity catalysts were obtained using a support with a Ce: Zr mole ratio 1: 1, HAuCl4 as the gold precursor deposited via deposition precipitation using sodium carbonate as the precipitation agent and the catalyst washed with water or 0.1 M NH4OH solution. In addition, the drying used was found to be critical with drying under vacuum at room temperature found to be most effective.
Resumo:
The spatial distributions of marine fauna and of pollution are both highly structured, and thus the resulting high levels of autocorrelation may invalidate conclusions based on classical statistical approaches. Here we analyse the close correlation observed between proxies for the disturbance associated with gas extraction activities and amphipod distribution patterns around four hydrocarbon platforms. We quantified the amount of variation independently accounted for by natural environmental variables, proxies for the disturbance caused by platforms, and spatial autocorrelation. This allowed us to demonstrate how each of these three factors significantly affects the community structure of amphipods. Sophisticated statistical techniques are required when taking into account spatial autocorrelation: nevertheless our data demonstrate that this approach not only enables the formulation of robust statistical inferences but also provides a much deeper understanding of the subtle interactions between human disturbance and natural factors affecting the structure of marine invertebrates communities. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A number of tetraalkylammonium and tetraalkylphosphonium amino acid based ionic liquids (AAILs) have been successfully used and recycled for the reactive extraction of naphthenic acids from crude oil and crude oil distillates. Spectral studies show that the mechanism by which this occurs is through the formation of a zwitterionic complex. Therein, the amino acid anion plays a key role in the formation of this complex. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A number of tetraalkylammonium methylcarbonate and hydrogencarbonate based ionic liquids are shown to be capable of reacting with the naphthenic acids contained in Doba crude oil via a neutralisation reaction. Spectral studies show that the ionic liquids neutralisation mechanism involves the formation of an ionic liquid-naphthenate complex, liberating methanol and carbon dioxide. Extraction of the neutralised complex into a separate methanol phase and subsequent regeneration using aqueous carbonic acid results in ∼70% of the ionic liquid being recovered for recycle. Isolation of the naphthenic acids shows that these make up to 0.85 wt% of the crude oil. Speciation of the naphthenic acids shows a mixture of monocyclic, through to tetracyclic structures with carbon numbers in the range C12-C40.
Resumo:
Ionic liquids (ILs) are popular designer green chemicals with great potential for use in diverse energy-related applications. Apart from the well-known low vapor pressure, the physical properties of ILs, such as hydrogen-bond-forming capacity, physical state, shape, and size, can be fine-tuned for specific applications. Natural gas hydrates are easily formed in gas pipelines and pose potential problems to the oil and natural gas industry, particularly during deep-sea exploration and production. This review summarizes the recent advances in IL research as dual-function gas hydrate inhibitors. Almost all of the available thermodynamic and kinetic inhibition data in the presence of ILs have been systematically reviewed to evaluate the efficiency of ILs in gas hydrate inhibition, compared to other conventional thermodynamic and kinetic gas hydrate inhibitors. The principles of natural gas hydrate formation, types of gas hydrates and their inhibitors, apparatuses and methods used, reported experimental data, and theoretical methods are thoroughly and critically discussed. The studies in this field will facilitate the design of advanced ILs for energy savings through the development of efficient low-dosage gas hydrate inhibitors.