30 resultados para VOLTAGES
Resumo:
The electrochemical generation of ozone by Ni/Sb-SnO2 anodes immersed in 0.5M H2SO4 was assessed in both flow and recycle systems using the same electrochemical cell. The anodes were found to exhibit current efficiencies of up to 50% for ozone generation under flow conditions at room temperature, with an optimum mole ratio in the precursor solutions of ca. 500:8:3 Sn:Sb:Ni and optimum cell voltage of 2.7V. A comparison of the data obtained under flow and recycle conditions suggests that the presence of ozone in the anolyte inhibits its formation. The minimum electrical energy cost achieved, of 18 kWh kg1 compares favorably with estimated costs for Cold Corona Discharge generally reported in the literature, especially when the very significant advantages of electrochemical ozone generation are taken into account.
Resumo:
The influence of the relative phase between the driving voltages on electron heating in asymmetric phase-locked dual frequency capacitively coupled radio frequency plasmas operated at 2 and 14 MHz is investigated. The basis of the analysis is a nonlinear global model with the option to implement a relative phase between the two driving voltages. In recent publications it has been reported that nonlinear electron resonance heating can drastically enhance the power dissipation to electrons at moments of sheath collapse due to the self-excitation of nonlinear plasma series resonance (PSR) oscillations of the radio frequency current. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In the case of two consecutive sheath collapses a substantial increase in dissipated power compared with the known increase due to a single PSR excitation event per period is observed. Phase resolved optical emission spectroscopy (PROES) provides access to the excitation dynamics in front of the driven electrode. Via PROES the propagation of beam-like energetic electrons immediately after the sheath collapse is observed. In this work we demonstrate that there is a close relation between moments of sheath collapse, and thus excitation of the PSR, and beam-like electron propagation. A comparison of simulation results to experiments in a single and dual frequency discharge shows good agreement. In particular the observed influence of the relative phase on the dynamics of a dual frequency discharge is described by means of the presented model. Additionally, the analysis demonstrates that the observed gain in dissipation is not accompanied by an increase in the electrode’s dc-bias voltage which directly addresses the issue of separate control of ion flux and ion energy in dual frequency capacitively coupled radio frequency plasmas.
Resumo:
Simple meso-scale capacitor structures have been made by incorporating thin (300 nm) single crystal lamellae of KTiOPO4 (KTP) between two coplanar Pt electrodes. The influence that either patterned protrusions in the electrodes or focused ion beam milled holes in the KTP have on the nucleation of reverse domains during switching was mapped using piezoresponse force microscopy imaging. The objective was to assess whether or not variations in the magnitude of field enhancement at localised “hot-spots,” caused by such patterning, could be used to both control the exact locations and bias voltages at which nucleation events occurred. It was found that both the patterning of electrodes and the milling of various hole geometries into the KTP could allow controlled sequential injection of domain wall pairs at different bias voltages; this capability could have implications for the design and operation of domain wall electronic devices, such as memristors, in the future.
Resumo:
OBJECTIVE: To determine whether there are inward currents in interstitial cells (IC) isolated from the guinea-pig detrusor and if so, to characterise them using the patch-clamp technique and pharmacological agents. MATERIALS AND METHODS: Using the whole-cell patch-clamp technique, inward currents were studied in IC enzymatically isolated from the detrusor of the guinea-pig bladder. Currents were evoked by stepping positively from a holding potential of - 80 mV. RESULTS: Outward K+ currents were blocked by Cs+ internal solution to reveal inward currents, which activated at voltages more positive than - 50 mV, peaked at 0 mV, reversed near + 50 mV and were half-maximally activated at - 27 mV. The inward currents showed voltage-dependent inactivation and were half-maximally inactivated at - 36 mV. Fitting the activation and inactivation data with a Boltzmann function revealed a window current between - 40 mV and + 20 mV. The decay of the current evoked at 0 mV could be fitted with a single exponential with a mean time-constant of 88 ms. Replacing external Ca2+ with Ba2+ significantly increased this to 344 ms. The current amplitude was augmented by Ba2+, and by Bay K 8644. Inward currents were significantly reduced by 1 microm nifedipine, across the voltage range, but the blockade was more effective on the current evoked at 0 mV than that evoked by a step to - 20 mV, perhaps indicating voltage-dependence of the action of nifedipine or another component of inward current. Increasing the concentration of the drug to 10 microm caused no further significant reduction either at 0 mV or at -20 mV. However, in the presence of 1 microm nifedipine the latter current was significantly reduced by 100 microm Ni2+. Both currents were significantly reduced in Ca2+-free solution. CONCLUSIONS: IC from the guinea-pig detrusor possess inward currents with typical characteristics of L-type Ca2+ current. They also have a component of inward Ca2+ current, which was resistant to nifedipine, but sensitive to Ni2+. Further work is needed to characterise the latter conductance. PMID: 16686735 [PubMed - indexed for MEDLINE]
Resumo:
1. Fast inward currents were elicited in freshly isolated sheep lymphatic smooth muscle cells by depolarization from a holding potential of -80 mV using the whole-cell patch-clamp technique. The currents activated at voltages positive to -40 mV and peaked at 0 mV. 2. When sodium chloride in the bathing solution was replaced isosmotically with choline chloride inward currents were abolished at all potentials. 3. These currents were very sensitive to tetrodotoxin (TTX). Peak current was almost abolished at 1 microM with half-maximal inhibition at 17 nM. 4. Examination of the voltage dependence of steady state inactivation showed that more than 90% of the current was available at the normal resting potential of these cells (-60 mV). 5. The time course of recovery from inactivation was studied using a double-pulse protocol and showed that recovery was complete within 100 ms with a time constant of recovery of 20 ms. 6. Under current clamp, action potentials were elicited by depolarizing current pulses. These had a rapid upstroke and a short duration and could be blocked with 1 microM TTX. 7. Spontaneous contractions of isolated rings of sheep mesenteric lymphatic vessels were abolished or significantly depressed by 1 microM TTX.
Resumo:
Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.
Resumo:
Recent experiments suggest that gold single-atom contacts and atomic chains break at applied voltages of 1 to 2 V. In order to understand why current flow affects these defect-free conductors, we have calculated the current-induced forces on atoms in a Au chain between two Au electrodes. These forces are not by themselves sufficient to rupture the chain. However, the current reduces the work to break the chain, which results in a dramatic increase in the probability of thermally activated spontaneous fracture of the chain. This current-induced embrittlement poses a fundamental limit to the current-carrying capacity of atomic wires.
Resumo:
We have operated 25-100 mu m diameter radio frequency microhollow cathode discharges stably, for many hours, in neon and in argon. Electrical and spectroscopic measurements were used to explore three possible electron heating modes and obtain detail regarding the electron energy distribution. Analysis points to the possibility of pendular electron heating at low voltages.
Resumo:
Silicon on Insulator (SOI) substrates offer a promising platform for monolithic high energy physics detectors with integrated read-out electronics and pixel diodes. This paper describes the fabrication and characterisation of specially-configured SOI substrates using improved bonded wafer ion split and grind/polish technologies. The crucial interface between the high resistivity handle silicon and the SOI buried oxide has been characterised using both pixel diodes and circular geometry MOS transistors. Pixel diode breakdown voltages were typically greater than 100V and average leakage current densities at 70 V were only 55 nA/ sq cm. MOS transistors subjected to 24 GeV proton irradiation showed an increased SOI buried oxide trapped charge of only 3.45x1011cn-2 for a dose of 2.7Mrad
Resumo:
The use of ionic liquid (IL) electrolytes promises to improve the energy density of electrochemical capacitors (ECs) by allowing for operation at higher voltages. Several studies have also shown that the pore size distribution of materials used to produce electrodes is an important factor in determining EC performance. In this research the capacitative, energy and power performance of ILs 1-ethyl-3- methylimidazolium tetrafluoroborate (EMImBF4), 1-ethyl-3-methylimidazolium dicyanamide (EMImN(CN)2), 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide (DMPImTFSI), and 1-butyl-3-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMPyT(F5Et)PF3) were studied and compared with the commercially utilised organic electrolyte 1M tetraethylammonium tetrafluoroborate solution in anhydrous propylene carbonate (Et4NBF4–PC 1 M). To assess the effect of pore size on IL performance, controlled porosity carbons were produced from phenolic resins activated in CO2. The carbon samples were characterised by nitrogen adsorption– desorption at 77 K and the relevant electrochemical behaviour was characterised by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The best capacitance performance was obtained for the activated carbon xerogel with average pore diameter 3.5 nm, whereas the optimum rate performance was obtained for the activated carbon xerogel with average pore diameter 6 nm. When combined in an EC with IL electrolyte EMImBF4 a specific capacitance of 210 F g1 was obtained for activated carbon sample with average pore diameter 3.5 nm at an operating voltage of 3 V. The activated carbon sample with average pore diameter 6 nm allowed for maximum capacitance retention of approximately 70% at 64 mA cm2.
Resumo:
The development of a plasma discharge at low voltage (200-600 V) in saline solution is characterized using fast and standard CCD camera imaging. Vapor formation, plasma formation, and vapor collapse and subsequent pressure wave propagation are observed. If, with increasing voltage, the total energy deposited is kept approximately constant, the sequence and nature of events are similar but develop faster and more reproducibly at the higher voltages. This is attributed to the slower temporal evolution of the vapor layer at lower voltages which means a greater sensitivity to hydrodynamic instabilities at the vapor-liquid interface.
Resumo:
In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (similar to 0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.
Resumo:
The optical properties of plasmonic semiconductor devices fabricated by focused ion beam (FIB) milling deteriorate because of the amorphisation of the semiconductor substrate. This study explores the effects of combining traditional 30 kV FIB milling with 5 kV FIB patterning to minimise the semiconductor damage and at the same time maintain high spatial resolution. The use of reduced acceleration voltages is shown to reduce the damage from higher energy ions on the example of fabrication of plasmonic crystals on semiconductor substrates leading to 7-fold increase in transmission. This effect is important for focused-ion beam fabrication of plasmonic structures integrated with photodetectors, light-emitting diodes and semiconductor lasers.
Resumo:
High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO3(-)-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 microM NO3-. In the latter, induction showed a latency of 40-80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO3-; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO3- additions which, after induction, resulted in reversible membrane depolarizations of (+)54-85 mV in the presence of 50 microM NO3-; and it was suppressed when NH4+ was present during the first, inductive exposure to NO3-. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (-400 to +100 mV). Measurements of NO3- uptake using NO3(-)-selective macroelectrodes indicated a charge stoichiometry for NO3- transport of 1(+):1(NO3-) with common K(m) and Jmax values around 25 microM and 75 pmol NO3- cm-2sec-1, respectively, and combined measurements of pHo and [NO3-]o showed a net uptake of approx. 1 H+ with each NO3- anion. Analysis of the NO3- current demonstrated a pronounced voltage sensitivity within the normal physiological range between -300 and -100 mV as well as interactions between the kinetic parameters of membrane voltage, pHo and [NO3-]o. Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pHo of 6.1, driving the membrane voltage from -350 to -150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approx. 20% fall in the K(m) for transport as a function in [H+]o. These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO3- anion transported across the membrane, and implicate a carrier cycle in which NO3- binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO3- transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO3- transport; finally, they distinguish metabolite repression of NO3- transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate.
Resumo:
High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO3-challenge and to quantify transport activity. The NO3--associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4-6 days postgermination. In 6-day-old seedlings, additions of 5-100 μm NO3-to the bathing medium resulted in membrane depolarizations of 8-43 mV, and membrane voltage (Vm) recovered on washing NO3-from the bath. Voltage clamp measurements carried out immediately before and following NO3-additions showed that the NO3--evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (-300 to +50 mV). Both membrane depolarizations and NO3--evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm-2. The NO3-current showed a pronounced voltage sensitivity within the normal physiological range between -250 and -100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4-8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO3-]o. At a constant pHo of 6.1, depolarization from -250 to -150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO3-binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO3-anion transported across the membrane. The results concur with previous studies showing a high-affinity NO3-transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3-transport at the plant plasma membrane. © 1995 Springer-Verlag New York Inc.