148 resultados para VI BIAU Lisboa 2008
Resumo:
NA
Resumo:
Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.
Resumo:
The success of sequestration-based remediation strategies will depend on detailed information, including the predominant U species present as sources before biostimulation and the products produced during and after in situ biostimulation. We used X-ray absorption spectroscopy to determine the valence state and chemical speciation of U in sediment samples collected at a variety of depths through the contaminant plume at the Field Research Center at Oak Ridge, TN, before and after approximately 400 days of in situ biostimulation, as well as in duplicate bioreduced sediments after 363 days of resting conditions. The results indicate that U(VI) in subsurface sediments was partially reduced to 10–40% U(IV) during biostimulation. After biostimulation, U was no longer bound to carbon ligands and was adsorbed to Fe/Mn minerals. Reduction of U(VI) to U(IV) continued in sediment samples stored under anaerobic condition at <4 °C for 12 months, with the fraction of U(IV) in sediments more than doubling and U concentrations in the aqueous phase decreasing from 0.5-0.74 to <0.1 µM. A shift of uranyl species from uranyl bound to phosphorus ligands to uranyl bound to carbon ligands and the formation of nanoparticulate uraninite occurred in the sediment samples during storage.
Resumo:
Energy levels and radiative rates for transitions among the lowest 24 fine-structure levels belonging to the ls(2) nl (n <5) configurations of Li-like O VI have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 63 Ry, using the Dirac Atomic R- matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates, collision strengths, and effective collision strengths are presented for all transitions. Comparisons with other available results are made, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 1%, while other parameters are probably accurate to better than 20%.
Resumo:
The properties of the 1-butyl-3-methylimidazolium salt of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)bis[bis-(nitrato-O,O)dioxouranate(VI)] anion have been investigated using electrochemistry, single-crystal X-ray crystallography, and extended X-ray absorbance fine structure spectroscopy: the anion structures from these last two techniques are in excellent agreement with each other. Electrochemical reduction of the complex leads to the a two-electron metal-centered reduction of U(VI) to U(IV), and the production Of UO2, or a complex containing UO2. Under normal conditions, this leads to the coating of the electrode with a passivating film. The presence of volatile organic compounds in the ionic liquids 1-alkyl-3-methylimidazolium nitrate (where the 1-alkyl chain was methyl, ethyl, propyl, butyl, pentyl, hexyl, dodecyl, hexadecyl, or octadecyl) during the oxidative dissolution of uranium(IV) oxide led to the formation of a yellow precipitate. To understand the effect of the cation upon the composition and structure of the precipitates, 1-alkyl-3-methylimidazolium salts of a number of nitratodioxouranate(VI) complexes were synthesized and then analyzed using X-ray crystallography. It was demonstrated that the length of the 1-alkyl chain played an important role, not only in the composition of the complex salt, but also in the synthesis of dinuclear anions containing the bridging mu(4)-(O,O,O',O'-ethane-1,2-dioato), or oxalato, ligand, by protecting it from further oxidation.
Resumo:
In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554-995nm wavelength range, and designated 2008 TC3 (refs 4-6). It subsequently hit the Earth. Because it exploded at 37km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.
Resumo:
The complex formation of the uranyl ion, UO22+, with chloride ions in acetonitrile has been investigated by factor analysis of UV-vis absorption and U L-3 edge EXAFS (extended X-ray absorption fine structure) spectra. As a function of increasing [Cl-]/[UO22+] ratio, the five monomeric species [UO2(H2O)(5)](2+), [UO2Cl(H2O)(2)(MeCN)(2)](+), [UO2Cl2(H2O)(MeCN)(2)], [UO2Cl3(MeCN)(2)](-), and [UO2Cl4](2-) have been observed. The distances determined in the first coordination sphere are: U-O-ax = 1.77 angstrom, U-O-H2O = 2.43 angstrom, U-N-MeCN = 2.53 angstrom, and U-Cl = 2.68 angstrom. A crystalline material has been obtained from the intermediate solution with the [Cl-]/[UO22+] ratio of similar to 2, where [UO2Cl2(H2O)(MeCN)(2)] is the dominating species. The crystal structure analysis of this material revealed a tetrameric complex, [(UO2)(4)(mu(2)-Cl)(4)(mu(3)-O)(2)(H2O)(2)(CH3CN)(4)]center dot(CH3CN). The crystal data are: monoclinic, space group P2(1)/n, a 10.6388(5) angstrom, b = 14.8441(5) angstrom, c = 10.8521(5) angstrom, beta = 109.164(5)degrees, and Z = 2. The U(VI) coordination of the solution species [UO2Cl2(H2O)(MeCN)(2)] changes during the crystallization by replacing one MeCN molecule with a bridging mu(3)-O atom in the tetramer.