3 resultados para V-LEIDEN MUTATION
Resumo:
The role of antiplatelet therapy as primary prophylaxis of thrombosis in low-risk essential thrombocythemia has not been studied in randomized clinical trials. We assessed the benefit/risk of low-dose aspirin in 433 low-risk essential thrombocythemia patients (CALR-mutated n=271, JAK2V617F-mutated n=162) who were on antiplatelet therapy or observation only. After a 2215 person-years follow-up free from cytoreduction, 25 thrombotic and 17 bleeding episodes were recorded. In CALR-mutated patients, antiplatelet therapy did not affect the risk of thrombosis but was associated with a higher incidence of bleeding (12.9 vs. 1.8 x1000 patient-years, p=0.03). In JAK2V617F-mutated patients, low-dose aspirin was associated with a reduced incidence of venous thrombosis with no effect on the risk of bleeding. Coexistence of JAK2V617F-mutation and cardiovascular risk factors increased the risk of thrombosis, even after adjusting for treatment with low-dose aspirin (incidence rate ratio: 9.8; 95% confidence interval: 2.3-42.3; p=0.02). Time free from cytoreduction was significantly shorter in CALR-mutated than in JAK2V617F-mutated essential thrombocythemia (median time 5 years and 9.8 years, respectively; p=0.0002) usually to control extreme thrombocytosis. In conclusion, in patients with low-risk, CALR-mutated essential thrombocythemia, low-dose aspirin does not reduce the risk of thrombosis and may increase the risk of bleeding.
Resumo:
Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD(+) acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD(+) human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD(+) allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD(+) patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.