35 resultados para Upper Canada College, Toronto.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isolation basin records from the Seymour-Belize Inlet Complex, a remote area of central mainland British Columbia, Canada are used to constrain post-glacial sea-level changes and provide a preliminary basis for testing geophysical model predictions of relative sea-level (RSL) change. Sedimentological and diatom data from three low-lying (<4 m elevation) basins record falling RSLs in late-glacial times and isolation from the sea by ~11,800–11,200 14C BP. A subsequent RSL rise during the early Holocene (~8000 14C BP) breached the 2.13 m sill of the lowest basin (Woods Lake), but the two more elevated basins (sill elevations of ~3.6 m) remained isolated. At ~2400 14C BP, RSL stood at 1.49 ± 0.34 m above present MTL. Falling RSLs in the late Holocene led to the final emergence of the Woods Lake basin by 1604 ± 36 14C BP. Model predictions generated using the ICE-5G model partnered with a small number of different Earth viscosity models generally show poor agreement with the observational data, indicating that the ice model and/or Earth models considered can be improved upon. The best data-model fits were achieved with relatively low values of upper mantle viscosity (5 × 1019 Pa s), which is consistent with previous modelling results from the region. The RSL data align more closely with observational records from the southeast of the region (eastern Vancouver Island, central Strait of Georgia), than the immediate north (Bella Bella–Bella Coola and Prince Rupert-Kitimat) and areas to the north-west (Queen Charlotte Sound, Hecate Strait), underlining the complexity of the regional response to glacio-isostatic recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During lateral leg raising, a synergistic inclination of the supporting leg and trunk in the opposite direction to the leg movement is performed in order to preserve equilibrium. As first hypothesized by Pagano and Turvey (J Exp Psychol Hum Percept Perform, 1995, 21:1070-1087), the perception of limb orientation could be based on the orientation of the limb's inertia tensor. The purpose of this study was thus to explore whether the final upper body orientation (trunk inclination relative to vertical) depends on changes in the trunk inertia tensor. We imposed a loading condition, with total mass of 4 kg added to the subject's trunk in either a symmetrical or asymmetrical configuration. This changed the orientation of the trunk inertia tensor while keeping the total trunk mass constant. In order to separate any effects of the inertia tensor from the effects of gravitational torque, the experiment was carried out in normo- and microgravity. The results indicated that in normogravity the same final upper body orientation was maintained irrespective of the loading condition. In microgravity, regardless of loading conditions the same (but different from the normogravity) orientation of the upper body was achieved through different joint organizations: two joints (the hip and ankle joints of the supporting leg) in the asymmetrical loading condition, and one (hip) in the symmetrical loading condition. In order to determine whether the different orientations of the inertia tensor were perceived during the movement, the interjoint coordination was quantified by performing a principal components analysis (PCA) on the supporting and moving hips and on the supporting ankle joints. It was expected that different loading conditions would modify the principal component of the PCA. In normogravity, asymmetrical loading decreased the coupling between joints, while in microgravity a strong coupling was preserved whatever the loading condition. It was concluded that the trunk inertia tensor did not play a role during the lateral leg raising task because in spite of the absence of gravitational torque the final upper body orientation and the interjoint coupling were not influenced.

Relevância:

20.00% 20.00%

Publicador: