3 resultados para Unconstrained and convex optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates topology optimization of energy absorbing structures in which material damage is accounted for in the optimization process. The optimization objective is to design the lightest structures that are able to absorb the required mechanical energy. A structural continuity constraint check is introduced that is able to detect when no feasible load path remains in the finite element model, usually as a result of large scale fracture. This assures that designs do not fail when loaded under the conditions prescribed in the design requirements. This continuity constraint check is automated and requires no intervention from the analyst once the optimization process is initiated. Consequently, the optimization algorithm proceeds towards evolving an energy absorbing structure with the minimum structural mass that is not susceptible to global structural failure. A method is also introduced to determine when the optimization process should halt. The method identifies when the optimization method has plateaued and is no longer likely to provide improved designs if continued for further iterations. This provides the designer with a rational method to determine the necessary time to run the optimization and avoid wasting computational resources on unnecessary iterations. A case study is presented to demonstrate the use of this method.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we consider the secure beamforming design for an underlay cognitive radio multiple-input singleoutput broadcast channel in the presence of multiple passive eavesdroppers. Our goal is to design a jamming noise (JN) transmit strategy to maximize the secrecy rate of the secondary system. By utilizing the zero-forcing method to eliminate the interference caused by JN to the secondary user, we study the joint optimization of the information and JN beamforming for secrecy rate maximization of the secondary system while satisfying all the interference power constraints at the primary users, as well as the per-antenna power constraint at the secondary transmitter. For an optimal beamforming design, the original problem is a nonconvex program, which can be reformulated as a convex program by applying the rank relaxation method. To this end, we prove that the rank relaxation is tight and propose a barrier interior-point method to solve the resulting saddle point problem based on a duality result. To find the global optimal solution, we transform the considered problem into an unconstrained optimization problem. We then employ Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the resulting unconstrained problem which helps reduce the complexity significantly, compared to conventional methods. Simulation results show the fast convergence of the proposed algorithm and substantial performance improvements over existing approaches.