13 resultados para U.S. Army Research Laboratory
Resumo:
Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.
Resumo:
New R-matrix calculations of electron impact excitation rates in Ca XV are used to derive theoretical electron density diagnostic emission line intensity ratios involving 2s(2)2p(2)- 2s2p(3) transitions, specifically R-1 = I(208.70 Angstrom)/I(200.98 Angstrom), R-2 = I(181.91 Angstrom)/I(200.98 Angstrom), and R-3 = I(215.38 Angstrom)/I(200.98 Angstrom), for a range of electron temperatures (T-e = 10(6.4)-10(6.8) K) and densities (Ne = 10(9)-10(13) cm(-3)) appropriate to solar coronal plasmas. Electron densities deduced from the observed values of R-1, R-2, and R-3 for several solar flares, measured from spectra obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab, are found to be consistent. In addition, the derived electron densities are in excellent agreement with those determined from line ratios in Ca XVI, which is formed at a similar electron temperature to Ca XV. These results provide some experimental verification for the accuracy of the line ratio calculations, and hence the atomic data on which they are based. A set of eight theoretical Ca XV line ratios involving 2s(2)2p(2)-2s2p(3) transitions in the wavelength range similar to140-216 Angstrom are also found to be in good agreement with those measured from spectra of the TEXT tokamak plasma, for which the electron temperature and density have been independently determined. This provides additional support for the accuracy of the theoretical line ratios and atomic data.
Resumo:
Direction repulsion describes the phenomenon in which observers typically overestimate the direction difference between two superimposed motions moving in different directions (Marshak & Sekuler, Science 205(1979) 1399). Previous research has found that, when a relatively narrow range of distractor speeds is considered, direction repulsion of a target motion increases monotonically with increasing speed of the distractor motion. We sought to obtain a more complete measurement of this speed-tuning function by considering a wider range of distractor speeds than has previously been used. Our results show that, contrary to previous reports, direction repulsion as a function of distractor speed describes an inverted U-function. For a target of 2.5deg/s, we demonstrate that the attenuation of repulsion magnitude with high-speed disractors can be largely explained in terms of the reduced apparent contrast of the distractor. However, when we reduce target motion speed, this no longer holds. When considered from the perspective of Edwards et al.s (Edwards, Badcock, & Smith, Vision Research 38 (1998) 1573) two global-motion channels, our results suggest that direction repulsion is speed dependent when the distractor and target motions are processed by different globalmotion channels, but is not speed dependent when both motions are processed by the same, high-speed channel. The implications of these results for models of direction repulsion are discussed.
Resumo:
ABSTRACT BACKGROUND: Acute exposure to high-altitude stimulates free radical formation in lowlanders yet whether this persists during chronic exposure in healthy well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS: Oxidative-nitrosative stress [ascorbate radical (A•-), electron paramagnetic resonance spectroscopy and nitrite (NO2-), ozone-based chemiluminescence] was assessed in venous blood of 25 male highlanders living at 3,600 m with (n = 13, CMS+) and without (n = 12, CMS-) CMS. Twelve age and activity-matched healthy male lowlanders were examined at sea-level and during acute hypoxia. We also measured flow-mediated dilatation (FMD), arterial stiffness (AIx-75) and carotid intima-media thickness (IMT). RESULTS: Compared to normoxic lowlanders, oxidative-nitrosative stress was moderately increased in CMS- (P < 0.05) as indicated by elevated A•- (3,191 ± 457 vs. 2,640 ± 445 arbitrary units (AU)] and lower NO2- (206 ± 55 vs. 420 ± 128 nmol/L) whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS+ (A•-: 3,765 ± 429 AU and NO2- : 148 ± 50 nmol/L) compared to both CMS- and lowlanders (P < 0.05). This was associated with systemic vascular dysfunction as indicated by lower (P < 0.05 vs. CMS-) FMD (4.2 ± 0.7 vs. 7.6 ± 1.7 %) and increased AIx-75 (23 ± 8 vs. 12 ± 7 %) and carotid IMT (714 ± 127 vs. 588 ± 94 µM). CONCLUSIONS: Healthy highlanders display a moderate sustained elevation in oxidative-nitrosative stress that unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.Clinical Trials Gov Registration # NCT011827921Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, Wales, UK;2Sondes Moléculaires en Biologie et Stress Oxydant, Institut de Chimie Radicalaire, CNRS UMR 7273, Aix-Marseille University, France;3Department of Cardiology, University Hospital of Bern, Bern, Switzerland;4Institute of Clinical Physiology, CNR, Pisa, Italy;5Instituto Bolivano de Biologia de Altura, La Paz, Bolivia;6Centre for Clinical and Population Sciences, Queen's University Belfast, Belfast, Northern Ireland,7Botnar Center for Clinical Research, Hirslanden Group, Lausanne, Switzerland;8Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile and9Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland*Drs Bailey, Rimoldi, Scherrer and Sartori contributed equally to this workCorrespondence: Damian Miles Bailey, Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, UK CF37 4AT email: dbailey1@glam.ac.uk.
Resumo:
R-matrix calculations of electron impact excitation rates in N- like S x are used to derive theoretical emission-line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 189-265 Angstrom wavelength range. A comparison of these with observational data for solar flares and active regions, obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab and the Solar EUV Rocket Telescope and Spectrograph, reveals that many of the S x lines in the spectra are badly blended with emission features from other species. However, the intensity ratios I(228.70 Angstrom)/I(264.24 Angstrom) and I(228.70 Angstrom)/I(259.49 Angstrom) are found to provide useful electron density diagnostics for flares, although the latter cannot be employed for active regions, because of blending of the 259.49 Angstrom line with an unidentified transition in these solar features.
Resumo:
Previously, large discrepancies have been found between theory and observation for Fe XV emission line ratios in solar flare spectra covering the 224-327 angstrom wavelength range, obtained by the Naval Research Laboratory's S082A instrument on board Skylab. These discrepancies have been attributed to either errors in the adopted atomic data or the presence of additional atomic processes not included in the modelling, such as fluorescence. However our analysis of these plus other S082A flare observations (the latter containing Fe XV transitions between 321-482 angstrom), performed using the most recent Fe XV atomic physics calculations in conjunction with a chianti synthetic flare spectrum, indicate that blending of the lines is primarily responsible for the discrepancies. As a result, most Fe XV lines cannot be employed as electron density diagnostics for solar flares, at least at the spectral resolution of S082A and similar instruments (i.e.similar to 0.1 angstrom). An exception is the intensity ratio I(3s3p P-3(2)-3p(2) P-3(1))/I(3s3p P-3(2)-3p(2) D-1(2))=I(321.8 angstrom)/I(327.0 angstrom), which appears to provide good estimates of the electron density at this spectral resolution.
Resumo:
Objective: To evaluate sperm DNA fragmentation and semen parameters to diagnose male factor infertility and predict pregnancy after IVF.
Design: Prospective study.
Setting: Academic research laboratory.
Patient(s): Seventy-five couples undergoing IVF and 28 fertile donors.
Intervention(s): Sperm DNA fragmentation was measured by the alkaline Comet assay in semen and sperm after density gradient centrifugation (DGC). Binary logistic regression was used to analyze odds ratios (OR) and relative risks (RR) for IVF outcomes.
Main Outcome Measure(s): Semen parameters and sperm DNA fragmentation in semen and DGC sperm compared with fertilization rates, embryo quality, and pregnancy.
Result(s): Men with sperm DNA fragmentation at more than a diagnostic threshold of 25% had a high risk of infertility (OR: 117.33, 95% confidence interval [CI]: 12.72–2,731.84, RR: 8.75). Fertilization rates and embryo quality decreased as sperm DNA fragmentation increased in semen and DGC sperm. The risk of failure to achieve a pregnancy increased when sperm DNA fragmentation exceeded a prognostic threshold value of 52% for semen (OR: 76.00, CI: 8.69–1,714.44, RR: 4.75) and 42% for DGC sperm (OR: 24.18, CI: 2.89–522.34, RR: 2.16).
Conclusion(s): Sperm DNA testing by the alkaline Comet assay is useful for both diagnosis of male factor infertility and prediction of IVF outcome.
Resumo:
Background: Clinical trials have shown the benefits of cholinesterase inhibitors for the treatment of mild-to-moderate Alzheimer's disease. It is not known whether treatment benefits continue after the progression to moderate-to-severe disease. Methods: We assigned 295 community-dwelling patients who had been treated with donepezil for at least 3 months and who had moderate or severe Alzheimer's disease (a score of 5 to 13 on the Standardized Mini-Mental State Examination [SMMSE, on which scores range from 0 to 30, with higher scores indicating better cognitive function]) to continue donepezil, discontinue donepezil, discontinue donepezil and start memantine, or continue donepezil and start memantine. Patients received the study treatment for 52 weeks. The coprimary outcomes were scores on the SMMSE and on the Bristol Activities of Daily Living Scale (BADLS, on which scores range from 0 to 60, with higher scores indicating greater impairment). The minimum clinically important differences were 1.4 points on the SMMSE and 3.5 points on the BADLS.
Results: Patients assigned to continue donepezil, as compared with those assigned to discontinue donepezil, had a score on the SMMSE that was higher by an average of 1.9 points (95% confidence interval [CI], 1.3 to 2.5) and a score on the BADLS that was lower (indicating less impairment) by 3.0 points (95% CI, 1.8 to 4.3) (P<0.001 for both comparisons). Patients assigned to receive memantine, as compared with those assigned to receive memantine placebo, had a score on the SMMSE that was an average of 1.2 points higher (95% CI, 0.6 to 1.8; P<0.001) and a score on the BADLS that was 1.5 points lower (95% CI, 0.3 to 2.8; P = 0.02). The efficacy of donepezil and of memantine did not differ significantly in the presence or absence of the other. There were no significant benefits of the combination of donepezil and memantine over donepezil alone.
Conclusions: In patients with moderate or severe Alzheimer's disease, continued treatment with donepezil was associated with cognitive benefits that exceeded the minimum clinically important difference and with significant functional benefits over the course of 12 months. (Funded by the U.K. Medical Research Council and the U.K. Alzheimer's Society; Current Controlled Trials number, ISRCTN49545035).
Resumo:
OBJECTIVE: Laypersons are poor at emergency pulse checks (sensitivity 84%, specificity 36%). Guidelines indicate that pulse checks should not be performed. The impedance cardiogram (dZ/dt) is used to assess stroke volume. Can a novel defibrillator-based impedance cardiogram system be used to distinguish between circulatory arrest and other collapse states?
DESIGN: Animal study.
SETTING: University research laboratory.
SUBJECTS: Twenty anesthetized, mechanically ventilated pigs, weight 50-55 kg.
INTERVENTIONS: Stroke volume was altered by right ventricular pacing (160, 210, 260, and 305 beats/min). Cardiac arrest states were then induced: ventricular fibrillation (by rapid ventricular pacing) and, after successful defibrillation, pulseless electrical activity and asystole (by high-dose intravenous pentobarbitone).
MEASUREMENTS AND MAIN RESULTS: The impedance cardiogram was recorded through electrocardiogram/defibrillator pads in standard cardiac arrest positions. Simultaneously recorded electro- and impedance cardiogram (dZ/dt) along with arterial blood pressure tracings were digitized during each pacing and cardiac arrest protocol. Five-second epochs were analyzed for sinus rhythm (20 before ventricular fibrillation, 20 after successful defibrillation), ventricular fibrillation (40), pulseless electrical activity (20), and asystole (20), in two sets of ten pigs (ten training, ten validation). Standard impedance cardiogram variables were noncontributory in cardiac arrest, so the fast Fourier transform of dZ/dt was assessed. During ventricular pacing, the peak amplitude of fast Fourier transform of dZ/dt (between 1.5 and 4.5 Hz) correlated with stroke volume (r2 = .3, p < .001). In cardiac arrest, a peak amplitude of fast Fourier transform of dZ/dt of < or = 4 dB x ohm x rms indicated no output with high sensitivity (94% training set, 86% validation set) and specificity (98% training set, 90% validation set).
CONCLUSIONS: As a powerful clinical marker of circulatory collapse, the fast Fourier transformation of dZ/dt (impedance cardiogram) has the potential to improve emergency care by laypersons using automated defibrillators.
Resumo:
Risk factors for the microvascular complications (nephropathy and retinopathy) of Type 1 and Type 2 diabetes mellitus and the associated accelerated atherosclerosis include: age, diabetes duration, genetic factors, hyperglycaemia, hypertension, smoking, inflammation, glycation and oxidative stress and dyslipoproteinaemia. Hypertriglyceridaemia, low HDL and small dense LDL are common features of Type 2 diabetes and Type 1 diabetes with poor glycaemic control or renal complications. With the expansion of knowledge and of clinical and research laboratory tools, a broader definition of 'lipid' abnormalities in diabetes is appropriate. Dyslipoproteinaemia encompasses alterations in lipid levels, lipoprotein subclass distribution, composition (including modifications such as non-enzymatic glycation and oxidative damage), lipoprotein-related enzymes, and receptor interactions and subsequent cell signaling. Alterations occur in all lipoprotein classes; chylomicrons, VLDL, LDL, HDL, and Lp(a). There is also emerging evidence implicating lipoprotein related genotypes in the development of diabetic nephropathy and retinopathy. Lipoprotein related mechanisms associated with damage to the cardiovascular system may also be relevant to damage to the renal and ocular microvasculature. Adverse tissue effects are mediated by both alterations in lipoprotein function and adverse cellular responses. Recognition and treatment of lipoprotein-related risk factors, supported by an increasing array of assays and therapeutic agents, may facilitate early recognition and treatment of high complication risk diabetic patients. Further clinical and basic research, including intervention trials, is warranted to guide clinical practice. Optimal lipoprotein management, as part of a multi-faceted approach to diabetes care, may reduce the excessive personal and economic burden of microvascular complications and the related accelerated atherosclerosis.
Resumo:
Globally the amount of installed terrestrial wind power both onshore and offshore has grown rapidly over the last twenty years. Most large onshore and offshore wind turbines are designed to harvest winds within the atmospheric boundary layer, which can be vary variable due to terrain and weather effects. The height of the neutral atmospheric boundary layer is estimated at above 1300m. A relatively new concept is to harvest more consistent wind conditions above the atmospheric boundary layer using high altitude wind harvesting devices such as tethered kites, air foils and dirigible rotors. This paper presents a techno-economic feasibility study of high altitude wind power in Northern Ireland. First this research involved a state of the art review of the resource and the technologies proposed for high altitude wind power. Next the techno-economic analysis involving four steps is presented. In step one, the potential of high altitude wind power in Northern Ireland using online datasets (e.g. Earth System Research Laboratory) is estimated. In step two a map for easier visualisation of geographical limitations (e.g. airports, areas of scenic beauty, flight paths, military training areas, settlements etc.) that could impact on high altitude wind power is developed. In step three the actual feasible resource available is recalculated using the visualisation map to determine the ‘optimal’ high altitude wind power locations in Northern Ireland. In the last step four the list of equipment, resources and budget needed to build a demonstrator is provided in the form of a concise techno-economic appraisal using the findings of the previous three steps.
Resumo:
Roadside safety barriers designs are tested with passenger cars in Europe using standard EN1317 in which the impact angle for normal, high and very high containment level tests is 20°. In comparison to EN1317, the US standard MASH has higher impact angles for cars and pickups (25°) and different vehicle masses. Studies in Europe (RISER) and the US have shown values for the 90th percentile impact angle of 30°–34°. Thus, the limited evidence available suggests that the 20° angle applied in EN 1317 may be too low.
The first goal of this paper is to use the US NCHRP database (Project NCHRP 17–22) to assess the distribution of impact angle and collision speed in recent ROR accidents. Second, based on the findings of the statistical analysis and on analysis of impact angles and speeds in the literature, an LS-DYNA finite element analysis was carried out to evaluate the normal containment level of concrete barriers in non-standard collisions. The FE model was validated against a crash test of a portable concrete barrier carried out at the UK Transport Research Laboratory (TRL).
The accident data analysis for run-off road accidents indicates that a substantial proportion of accidents have an impact angle in excess of 20°. The baseline LS-DYNA model showed good comparison with experimental acceleration severity index (ASI) data and the parametric analysis indicates a very significant influence of impact angle on ASI. Accordingly, a review of European run-off road accidents and the configuration of EN 1317 should be performed.