3 resultados para Two-step langmuir model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typologies have represented an important tool for the development of comparative social policy research and continue to be widely used in spite of growing criticism of their ability to capture the complexity of welfare states and their internal heterogeneity. In particular, debates have focused on the presence of hybrid cases and the existence of distinct cross-national pattern of variation across areas of social policy. There is growing awareness around these issues, but empirical research often still relies on methodologies aimed at classifying countries in a limited number of unambiguous types. This article proposes a two-step approach based on fuzzy-set-ideal-type analysis for the systematic analysis of hybrids at the level of both policies (step 1) and policy configurations or combinations of policies (step 2). This approach is demonstrated by using the case of childcare policies in European economies. In the first step, parental leave policies are analysed using three methods – direct, indirect, and combinatory – to identify and describe specific hybrid forms at the level of policy analysis. In the second step, the analysis focus on the relationship between parental leave and childcare services in order to develop an overall typology of childcare policies, which clearly shows that many countries display characteristics normally associated with different types (hybrids and. Therefore, this two-step approach enhances our ability to account and make sense of hybrid welfare forms produced from tensions and contradictions within and between policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the overall catalytic activity trend for rational catalyst design is one of the core goals in heterogeneous catalysis. In the past two decades, the development of density functional theory (DFT) and surface kinetics make it feasible to theoretically evaluate and predict the catalytic activity variation of catalysts within a descriptor-based framework. Thereinto, the concept of the volcano curve, which reveals the general activity trend, usually constitutes the basic foundation of catalyst screening. However, although it is a widely accepted concept in heterogeneous catalysis, its origin lacks a clear physical picture and definite interpretation. Herein, starting with a brief review of the development of the catalyst screening framework, we use a two-step kinetic model to refine and clarify the origin of the volcano curve with a full analytical analysis by integrating the surface kinetics and the results of first-principles calculations. It is mathematically demonstrated that the volcano curve is an essential property in catalysis, which results from the self-poisoning effect accompanying the catalytic adsorption process. Specifically, when adsorption is strong, it is the rapid decrease of surface free sites rather than the augmentation of energy barriers that inhibits the overall reaction rate and results in the volcano curve. Some interesting points and implications in assisting catalyst screening are also discussed based on the kinetic derivation. Moreover, recent applications of the volcano curve for catalyst design in two important photoelectrocatalytic processes (the hydrogen evolution reaction and dye-sensitized solar cells) are also briefly discussed.