19 resultados para Tuberculosis-Investigación
Resumo:
Leukocyte-derived matrix metalloproteinases (MMP) are implicated in the tissue destruction characteristic of tuberculosis (TB). The contribution of lung stromal cells to MMP activity in TB is unknown. Oncostatin M (OSM) is an important stimulus to extrapulmonary stromal MMP induction, but its role in regulation of pulmonary MMP secretion or pathophysiology of TB is unknown. We investigated OSM secretion from Mycobacterium tuberculosis (Mtb)-infected human monocytes/macrophages and the networking effects of such OSM on lung fibroblast MMP secretion. Mtb increased monocyte OSM secretion dose dependently in vitro. In vivo tuberculous granulomas immunostained positively for OSM. Further, conditioned media from Mtb-infected monocytes (CoMTb) induced monocyte OSM secretion (670 ± 55 versus 166 ± 14 pg/mL in controls), implicating an autocrine loop. Mtb-induced OSM secretion was prostaglandin (PG) sensitive, and required activation of surface G-protein coupled receptors. OSM induction was ERK MAP kinase dependent, p38-requiring but JNK-independent. OSM synergized with TNF-, a key cytokine in TB granuloma formation, to stimulate pulmonary fibroblast MMP-1/-3 secretion, while suppressing secretion of tissue inhibitors of metalloproteinases-1/-2. In summary, Mtb infection of monocytes results in PG-dependent OSM secretion, which synergizes with TNF- to drive functionally unopposed fibroblast MMP-1/-3 secretion, demonstrating a previously unrecognized role for OSM in TB.
Resumo:
1. We examine whether various measures of herbivore current physiological state (age, breeding and immune status) and genetic potential can be used as indicators of exposure to and risk from disease. We use dairy cattle and the risks of tuberculosis (TB) transmission posed to them by pasture contaminated with badger excreta (via the fecal-oral route) as a model system to address our aim.
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of
Resumo:
Seven ethnobotanically selected medicinal plants were screened for their antimycobacterial activity. The mininium inhibitory concentration (MIC) of four plants namely Artemisia afra, Dodonea angustifolia, Drosera capensis and Galenia africana ranged from 0.781 to 6.25 mg/mL against Mycobacterium smegmatis. G. africana showed the best activity exhibiting an MIC of 0.78 mg/mL and a minimum bactericidal concentration (MBC) of 1.56 mg/mL. The MICs of ethanol extracts of A angustifolia and G. africana against M. tuberculosis were found to be 5.0 and 1.2 mg/mL respectively. The mammalian cytotoxicity IC50 value of the most active antimycobacterial extract, from G. africana, was found to be 101.3 mu g/mL against monkey kidney Vero cells. Since the ethanol G. africana displayed the best antimycobacterial activity, it was subjected to fractionation which led to the isolation of a flavone, 5,7,2'-trihydroxyflavone. The MIC of this compound was found to be 0.031 mg/mL against M. smegmatis and 0.10 mg/mL against M. tuberculosis. This study gives some scientific basis to the 14 traditional use of these plants for TB-related symptoms. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Tuberculosis (TB) pleural disease is complicated by extensive tissue destruction. Matrix metalloproteinase (MMP)-1 and -9 are implicated in immunopathology of pulmonary and central nervous system TB. There are few data on MMP activity in TB pleurisy. The present study investigated MMP-1, -2 and -9 and their specific inhibitors (tissue inhibitor of metalloproteinase (TIMP)-1 and -2) in tuberculous effusions, and correlated these with clinical and histopathological features. Clinical data, routine blood tests, and pleural fluid/biopsy material were obtained from 89 patients presenting with pleural effusions in a TB-endemic area. MMP-1, -2 and -9 were measured by zymography or western blot, and TIMP-1 and -2 by ELISA. Pleural biopsies were examined microscopically, cultured for acid–alcohol fast bacilli and immunostained for MMP-9. Tuberculous pleural effusions contained the highest concentrations of MMP-9 compared with malignant effusions or heart failure transudates. MMP-9 concentrations were highest in effusions from patients with granulomatous biopsies: median (interquartile range) 108 (61–218) pg·mL-1 versus 43 (12–83) pg·mL-1 in those with nongranulomatous pleural biopsies. MMP-1 and -2 were not upregulated in tuberculous pleural fluid. The ratio of MMP-9:TIMP-1 was significantly higher in TB effusions. Tuberculous pleurisy is characterised by a specific pattern of matrix metalloproteinase-9 upregulation, correlating with the presence of granulomas and suggesting a specific role for matrix metalloproteinase-9 in inflammatory responses in tuberculous pleural disease.
Resumo:
The study focuses on the evidence for tuberculosis apparent in an Iron Age population recovered from the cemetery of Aymyrlyg, Tyva (Tuva), South Siberia. A recent wholly molecular study of five of the cases confirmed the presence of Mycobacterium tuberculosis (MTB) complex DNA in four of the individuals. In all cases the disease was caused by strains of Mycobacterium bovis rather than Mycobacterium tuberculosis and represents the first positive identification of the bovine form of the disease in archaeological human remains. Details of the palaeopathological characteristics of the cases are provided in the current paper, while the molecular observations are extended to include a quantitative evaluation of the surviving mycobacterial DNA using real-time PCR. The observation that bovine tuberculosis was the pathogen responsible is discussed in terms of current understanding of the evolution of the MTB complex as well as the implications for future ancient DNA studies in this area.
Resumo:
Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.
Resumo:
Tuberculosis (TB) caused by Mycobacterium bovis is a re-emerging disease of livestock that is of major economic importance worldwide, as well as being a zoonotic risk there is significant heritability for host resistance to bovine TB (bTB) in dairy cattle. To identify resistance loci for bTB, we undertook a genome-wide association study in female Holstein-Friesian cattle with 592 cases and 559 age-matched controls from case herds. Cases and controls were categorised into distinct phenotypes: skin test and lesion positive vs skin test negative on multiple occasions, respectively these animals were genotyped with the Illumina BovineHD 700K BeadChip. Genome-wide rapid association using linear and logistic mixed models and regression (GRAMMAR), regional heritability mapping (RHM) and haplotype-sharing analysis identified two novel resistance loci that attained chromosome-wise significance, protein tyrosine phosphatase receptor T (PTPRT; P=4.8 × 10 -7) and myosin IIIB (MYO3B; P=5.4 × 10 -6). We estimated that 21% of the phenotypic variance in TB resistance could be explained by all of the informative single-nucleotide polymorphisms, of which the region encompassing the PTPRT gene accounted for 6.2% of the variance and a further 3.6% was associated with a putative copy number variant in MYO3B the results from this study add to our understanding of variation in host control of infection and suggest that genetic marker-based selection for resistance to bTB has the potential to make a significant contribution to bTB control.
Resumo:
Background: The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates. Methodology/Principal Findings: We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC- curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23±0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data. Conclusions/Significance: These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies. © 2014 Tsairidou et al.