105 resultados para Trypsin-inhibitor Sfti-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical complexity of the defensive skin secretion of the red-eyed leaf frog, (Agalychnis callidryas), has not been elucidated in detail. During a systematic study of the skin secretion peptidomes of phyllomedusine frogs, we discovered a novel Kazal-type protein with potent trypsin inhibitory activity (Ki = 1.9 nM) that displays the highest degree of structural similarity with Kazal proteins from bony fishes. The protein was located in reverse-phase HPLC fractions following a screen of such for trypsin inhibition and subsequent partial Edman degradation of the peak active fraction derived the sequence: ATKPR-QYIVL-PRILRPV-GT. The molecular mass of the major component in this fraction was established by MALDI-TOF MS as 5893.09 Da. This partial sequence (assuming blank cycles to be Cys residues) was used to design a degenerate primer pool that was employed successfully in RACE-PCR to clone homologous precursor-encoding cDNA that encoded a mature Kazal protein of 52 amino acid residues with a computed molecular mass of 5892.82 Da. The protein was named A. callidryas Kazal trypsin inhibitor (ACKTI). BLAST analysis revealed that ACKTI contained a canonical Kazal motif (C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C). This novel amphibian skin Kazal trypsin inhibitor adds to the spectrum of trypsin inhibitors of Kunitz- and Bowman Birk-type reported from this amphibian source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report a novel heptadecapeptide (LIGGCWTKSIPPKPCLV) of the pLR/ranacyclin family, named pLR-HL, whose structure was deduced from its biosynthetic precursor-encoding cDNA cloned from the skin secretion-derived cDNA library of the broad-folded frog, Hylarana latouchii, by employing a "shotgun" cloning technique. It contains a disulphide loop between Cys5 and Cys15 which is consistent with Bowman-Birk-type protease inhibitors. The primary structure of pLR-HL deduced from the cDNA sequence was confirmed by fractionating the skin secretion using reverse phase HPLC and subsequent analysis using MALDI-TOF mass spectrometry and LC/MS/MS fragmentation sequencing. On the basis of the establishment of unequivocal amino acid sequence, a synthetic replicate was synthesised by solid-phase Fmoc chemistry, and it displayed a moderately potent trypsin inhibition with a Ki of 143 nM. The substitution of Lys-8 by Phe (Phe8 -pLR-HL) resulted in abolition of trypsin inhibition but generation of modest inhibition on chymotrypsin with a Ki of 2.141 μM. Additionally, both the disulphide loops of pLR-HL and Phe8 -pLR-HL were synthesised and tested. Both of the catalytic loops retained similar inhibitory potencies towards trypsin or chymotrypsin in comparison with the original intact molecules. Thus, the replacement of reactive site residues could alter the specificity of these protease inhibitors, while the canonical reactive loop alone can independently constitute biologically-active moiety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease inhibitors are found in many venoms and evidence suggests that they occur widely in amphibian skin secretions. Kunitz inhibitors have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in phyllomedusine frogs and Bowman–Birk inhibitors in ranid frogs. Selective protease inhibitors could have important applications as therapeutics in the treatment of diseases in which discrete proteases play an aetiologcal role. Here we have examined the skin secretion of the edible frog, Rana esculenta, for protease inhibitors using trypsin as a model. HPLC fractions of secretions were screened for inhibitory activity using a chromogenic substrate as reporter. Three major peptides were resolved with trypsin inhibitory activity in HPLC fractions — one was a Kunitz-type inhibitor, a second was a Bowman–Birk inhibitor but the third represented a novel class of trypsin inhibitor in European frog skin. Analysis of the peptide established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17. Peptide AC-17 resembled a typical “Rana box” antimicrobial peptide but while it was active against Escherichia coli (MIC 30 µM) it was devoid of activity against Staphylococcus aureus and of haemolytic activity. In contrast, the peptide was a potent inhibitor of trypsin with a Ki of 5.56 µM. AC-17 represents the prototype of a novel trypsin inhibitor from the skin secretion of a European ranid frog that may target a trypsin-like protease present on the surface of Gram-negative bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, an amphibian (Odorrana hejiangensis) skin extract was fractionated by reverse phase HPLC and fractions were screened for trypsin inhibitory activity. Using this initial approach, a novel trypsin inhibitory peptide was detected with an apparent protonated molecular mass of 1804.83Da, as determined by MALDI-TOF mass spectrometry. It was named Hejiang trypsin inhibitor (HJTI) in accordance. The primary structure of the biosynthetic precursor of HJTI was deduced from a cDNA sequence cloned from a skin-derived cDNA library. The primary structure of the encoded predicted mature active peptide was established as: GAPKGCWTKSYPPQPCS (non-protonated monoisotopic molecular mass - 1802.81Da). On the basis of this unequivocal amino acid sequence, a synthetic replicate was synthesized by solid phase Fmoc chemistry. This replicate displayed a moderately potent trypsin inhibition with a K(i) of 388nM. Bioinformatic analysis of the primary structure of this peptide indicated that it was a member of the Bowman-Birk family of protease inhibitors. The substitutions of Gln-14 and Ser-17 by Lys, resulted in an increase in cationicity and a small increase in potency to a K(i) value of 218nM. Neither HJTI nor its synthetic analog, possessed any significant antimicrobial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigate the skin secretion of the Madagascan Tomato Frog, Dyscophus guineti, which is characterized by its peculiarly adhesive and viscous nature, with a view toward the function of the member of the Kunitz/bovine pancreatic trypsin inhibitor family (BPTI) it is known to contain. Using “shotgun” cloning of a skin secretion-derived cDNA library, we obtained the full-length sequence of the respective precursor that encodes this trypsin inhibitor. Furthermore, we demonstrated that this enzyme has inhibitory activity against trypsin, but not against thrombin, and also has no antimicrobial activity. Moreover, we confirm that it appears to be the only bioactive peptide in the skin secretion of this species. Using these observations, we attempt to posit a role for this inhibitor. In particular, we hypothesize that the trypsin inhibitor in D. guineti (and possibly other microhylid frogs) maintains the soluble state of the skin secretion during storage in the glands. Upon discharge of the secretion, the trypsin inhibitor, which occurs in low concentrations, can no longer prevent the polymerisation process of other yet unidentified skin proteins, thereby resulting in the conversion of the secretion to its final glue-like state. Thus, the major defensive value of the skin secretion appears to be mechanical, impeding ingestion through a combination of adhesion and the body inflation typical for some microhylid frogs rather than chemical through antimicrobial activity or toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Schistosomes are able to survive for prolonged periods in the blood system, despite continuous contact with coagulatory factors and mediators of the host immune system. Protease inhibitors likely play a critical role in host immune modulation thereby promoting parasite survival in this extremely hostile environment. Even though Kunitz type serine protease inhibitors have been shown to play important physiological functions in a range of organisms these proteins are less well characterised in parasitic helminths.

METHODS: We have cloned one gene sequence from S. mansoni, Smp_147730 (SmKI-1) which is coded for single domain Kunitz type protease inhibitor, E. coli-expressed and purified. Immunolocalisation and western blotting was carried out using affinity purified polyclonal anti-SmKI-1 murine antibodies to determine SmKI-1 expression in the parasite. Protease inhibitor assays and coagulation assays were performed to evaluate the functional roles of SmKI-1.

RESULTS: SmKI-1 is localised in the tegument of adult worms and the sub-shell region of eggs. Furthermore, this Kunitz protein is secreted into the host in the ES products of the adult worm. Recombinant SmKI-1 inhibited mammalian trypsin, chymotrypsin, neutrophil elastase, FXa and plasma kallikrein with IC50 values of 35 nM, 61 nM, 56 nM, 142 nM and 112 nM, respectively. However, no inhibition was detected for pancreatic elastase or cathepsin G. SmKI-1 (4 μM) delayed blood clot formation, reflected in an approximately three fold increase in activated partial thromboplastin time and prothrombin time.

CONCLUSIONS: We have functionally characterised the first Kunitz type protease inhibitor (SmKI-1) from S. mansoni and show that it has anti-inflammatory and anti-coagulant properties. SmKI-1 is one of a number of putative Kunitz proteins in schistosomes that have presumably evolved as an adaptation to protect these parasites from the defence mechanisms of their mammalian hosts. As such they may represent novel vaccine candidates and/or drug targets for schistosomiasis control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural diversity of polypeptides in amphibian skin secretion probably reflects different roles in dermal regulation or in defense against predators. Here we report the structures of two novel trypsin inhibitor analogs, BOTI and BVTI, from the dermal venom of the toads, Bombina orientalis and Bombina variegata. Cloning of their respective precursors was achieved from lyophilized venom cDNA libraries for the first time. Amino acid alignment revealed that both deduced peptides, consisting of 60 amino acid residues, including 10 cysteines and the reactive center motif, -CDKKC-, can be affirmed as structural homologs of the trypsin inhibitor from Bombina bombina skin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian skin secretions contain biologically-active compounds, such as anti-microbial peptides and trypsin inhibitors, which are used by biomedical researchers as a source of potential novel drug leads or pharmacological agents. Here, we report the application of a recently developed technique within our laboratory to “shotgun” clone the cDNAs encoding two novel but structurally-related peptides from the lyophilized skin secretions of one species of European frog, Rana esculenta and one species of Chinese frog, Odorrana schmackeri. Bioanalysis of the peptides established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17, which is a canonical Kunitz-type protease inhibitor motif (-CKAAFC-). Due to the presence of this structural attribute, these peptides were named kunitzin-RE (AAKIILNPKFRCKAAFC) and kunitzin-OS (AVNIPFKVHLRCKAAFC). Synthetic replicates of these two novel peptides were found to display a potent inhibitory activity against Escherichia coli but were ineffective at inhibiting the growth of Staphylococcus aureus and Candida albicans at concentrations up to 160 μM, and both showed little haemolytic activity at concentrations up to 120 μM. Subsequently, kunitzin-RE and kunitzin-OS were found to be a potent inhibitor of trypsin with a Ki of 5.56 μM and 7.56 μM that represent prototypes of a novel class of highly-attenuated amphibian skin protease inhibitor. Substitution of Lys-13, the predicted residue occupying the P1 position within the inhibitory loop, with Phe (F) resulted in decrease in trypsin inhibitor effectiveness and antimicrobial activity against Esherichia coli, but exhibits a potential inhibition activity against chymotrypsin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide generates slow electrical oscillations (SEOs) in cells near the myenteric edge of the circular muscle layer, which resemble slow waves generated by interstitial cells of Cajal (ICCs) at the submucosal edge of this muscle. The properties of SEOs were studied to determine whether these events are similar to slow waves. Rapid frequency membrane potential oscillations (MPOs; 16 +/- 1 cycles/min and 9.6 +/- 0.2 mV) were recorded from control muscles near the myenteric edge. Sodium nitroprusside (0.3 microM) reduced MPOs and initiated SEOs (1.3 +/- 0.3 cycles/min and 13.4 +/- 1.4 mV amplitude). SEOs were abolished by the guanylate cyclase inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxaline-1-one (10 microM). MPOs were abolished by nifedipine (1 microM), whereas SEO frequency increased and the amount of depolarization decreased. BAY K 8644 (1 microM) prolonged SEOs and reduced their frequency. SEOs were abolished by Ni(2+) (0.5 mM), low Ca(2+) solution (0.1 mM Ca(2+)), cyclopiazonic acid (10 microM), and the mitochondrial uncouplers antimycin (10 microM) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (1 microM). Oligomycin (10 microM) was without effect. These effects are similar to those described for colonic slow waves. Our results suggest that nitric oxide-induced SEOs are similar in mechanism to slow waves, an activity not previously thought to be generated by myenteric pacemakers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum proteins were fractionated by polyacrylamide gel electrophoresis under denaturing conditions and transferred to nitrocellulose membranes. The blotted polypeptides were probed with biotinylated Ricinus communis lectin (RCA120) followed by streptavidin/alkaline phosphatase. This procedure detected five asialoglycoproteins (a2-macroglobulin, transferrin, a1-antitrypsin, a1-antichymotrypsin and haptoglobin ß chain). The asialoform of the a1-trypsin inhibitor was found to be decreased in inflammation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Childhood asthma is characterized by inflammation of the airways. Structural changes of the airway wall may also be seen in some children early in the course of the disease. Matrix metalloproteinases (MMPs) are key mediators in the metabolism of the extracellular matrix (ECM). Objective To investigate the balance of MMP-8, MMP-9 and tissue inhibitor of metalloproteinases (TIMP)-1 in the airways of children with asthma. Methods One hundred and twenty-four children undergoing elective surgical procedures also underwent non-bronchoscopic bronchoalveolar lavage (BAL). MMP-8, MMP-9 and TIMP-1 were measured by ELISA. Results There was a significant reduction in MMP-9 in atopic asthmatic children (n=31) compared with normal children (n=30) [median difference: 0.57 ng/mL (95% confidence interval: 0.18–1.1 ng/mL)]. The ratio of MMP-9 to TIMP-1 was also reduced in asthmatic children. Levels of all three proteins were significantly correlated to each other and to the relative proportions of particular inflammatory cells in BAL fluid (BALF). Both MMP-8 and MMP-9 were moderately strongly correlated to the percentage neutrophil count (r=0.40 and 0.47, respectively, P