33 resultados para Truck terminals
Resumo:
Fuel economy has become an important consideration in forklift truck design, particularly in Europe. A simulation of the fuel consumption and performance of a forklift truck has been developed, validated and subsequently used to determine the energy consumed by individual powertrain components during drive cycles.
The truck used in this study has a rated lifting capacity of 2500kg, and is powered by a 2.6 litre naturally aspirated diesel engine with a fuel pump containing a mechanical variable-speed governor. The drivetrain consisted of a torque convertor, hydraulic clutch and single speed transmission.
AVL Cruise was used to simulate the vehicle powertrain, with coupled Mathworks Simulink models used to simulate the hydraulic and control systems and governor. The vehicle has been simulated on several performance and fuel consumption drive cycles with the main focus being the VDI 2198 fuel consumption drive cycle.
To validate the model, a truck was instrumented and measurements taken to compare the performance and instantaneous fuel consumption to simulated values. The fuel injector pump was modified and calibrated to enable instantaneous fuel flow to be measured.
The model has been validated to within acceptable limits and has been used to investigate the effect four different torque converters have on the fuel consumption and performance of the forklift truck. The study demonstrates how the model can be used to compare the fuel consumption and performance trade-offs when selecting drivetrain components.
Resumo:
This paper addresses the problem of optimally locating intermodal freight terminals in Serbia. To solve this problem and determine the effects of the resulting scenarios, two modeling approaches were combined. The first approach is based on multiple-assignment hub-network design, and the second is based on simulation. The multiple-assignment p-hub network location model was used to determine the optimal location of intermodal terminals. Simulation was used as a tool to estimate intermodal transport flow volumes, due to the unreliability and unavailability of specific statistical data, and as a method for quantitatively analyzing the economic, time, and environmental effects of different scenarios of intermodal terminal development. The results presented here represent a summary, with some extension, of the research realized in the IMOD-X project (Intermodal Solutions for Competitive Transport in Serbia).
Resumo:
Bridge structures are continuously subject to degradation due to the environment, ageing and excess loading. Periodic monitoring of bridges is therefore a key part of any maintenance strategy as it can give early warning if a bridge becomes unsafe. This article investigates an alternative method for the monitoring of bridge dynamic behaviour: a truck-trailer vehicle system, with accelerometers fitted to the axles of the trailer. The method aims to detect changes in the damping of a bridge, which may indicate the existence of damage. A simplified vehicle-bridge interaction model is used in theoretical simulations to assess the effectiveness of the method in detecting those changes. The influence of road profile roughness on the vehicle vibration is overcome by recording accelerations from both axles of a trailer and then analysing the spectra of the difference in the accelerations between the two axles. The effectiveness of the approach in detecting damage simulated as a loss in stiffness is also investigated. In addition, the sensitivity of the approach to the vehicle speed, road roughness class, bridge span length, changes in the equal axle properties and noise is investigated.
Resumo:
A novel dual-band printed diversity antenna is proposed and studied. The antenna, which consists of two back-to- back monopoles with symmetric configuration, is printed on a printed circuit board. The effects of some important parameters of the proposed antenna are deeply studied and the design methodology is given. A prototype of the proposed antenna operating at UMTS (1920-2170 MHz) and 2.4-GHz WLAN (2400-2484 MHz) bands is provided to demonstrate the usability of the methodology in dual-band diversity antenna for mobile terminals. In the above two bands, the isolations of the prototype are larger than 13 dB and 16 dB, respectively. The measured radiation patterns of the two monopoles in general cover complementary space regions. The diversity performance is also evaluated by calculating the envelope correlation coefficient, the mean effective gains of the antenna elements and the diversity gain. It is proved that the proposed antenna can provide spatial and pattern diversity to combat multipath fading.
Resumo:
Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.
Resumo:
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.
Resumo:
Wireless enabled portable devices must operate with the highest possible energy efficiency while still maintaining a minimum level and quality of service to meet the user's expectations. The authors analyse the performance of a new pointer-based medium access control protocol that was designed to significantly improve the energy efficiency of user terminals in wireless local area networks. The new protocol, pointer controlled slot allocation and resynchronisation protocol (PCSAR), is based on the existing IEEE 802.11 point coordination function (PCF) standard. PCSAR reduces energy consumption by removing the need for power saving stations to remain awake and listen to the channel. Using OPNET, simulations were performed under symmetric channel loading conditions to compare the performance of PCSAR with the infrastructure power saving mode of IEEE 802.11, PCF-PS. The simulation results demonstrate a significant improvement in energy efficiency without significant reduction in performance when using PCSAR. For a wireless network consisting of an access point and 8 stations in power saving mode, the energy saving was up to 31% while using PCSAR instead of PCF-PS, depending upon frame error rate and load. The results also show that PCSAR offers significantly reduced uplink access delay over PCF-PS while modestly improving uplink throughput.
Resumo:
Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.
Resumo:
The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.
Resumo:
Small salient-pole machines, in the range 30 kVA to 2 MVA, are often used in distributed generators, which in turn are likely to form the major constituent of power generation in power system islanding schemes or microgrids. In addition to power system faults, such as short-circuits, islanding contains an inherent risk of out-of-synchronism re-closure onto the main power system. To understand more fully the effect of these phenomena on a small salient-pole alternator, the armature and field currents from tests conducted on a 31.5 kVA machine are analysed. This study demonstrates that by resolving the voltage difference between the machine terminals and bus into direct and quadrature axis components, interesting properties of the transient currents are revealed. The presence of saliency and short time-constants cause intriguing differences between machine events such as out-of-phase synchronisations and sudden three-phase short-circuits.
Resumo:
This paper investigates the control and operation of doubly-fed induction generator (DFIG) and fixed-speed induction generator (FSIG) based wind farms under unbalanced grid conditions. A DFIG system model suitable for analyzing unbalanced operation is developed, and used to assess the impact of an unbalanced supply on DFIG and FSIG operation. Unbalanced voltage at DFIG and FSIG terminals can cause unequal heating on the stator windings, extra mechanical stresses and output power fluctuations. These problems are particularly serious for the FSIG-based wind farm without a power electronic interface to the grid. To improve the stability of a wind energy system containing both DFIG and FSIG based wind farms during network unbalance, a control strategy of unbalanced voltage compensation by the DFIG systems is proposed. The DFIG system compensation ability and the impact of transmission network impedance are illustrated. The simulation results implemented in Matlab/Simulink show that the proposed DFIG control system improves not only its own performance, but also the stability of the FSIG system with the same grid connection point during network unbalance.