5 resultados para Tree solution method
Resumo:
This paper formulates a linear kernel support vector machine (SVM) as a regularized least-squares (RLS) problem. By defining a set of indicator variables of the errors, the solution to the RLS problem is represented as an equation that relates the error vector to the indicator variables. Through partitioning the training set, the SVM weights and bias are expressed analytically using the support vectors. It is also shown how this approach naturally extends to Sums with nonlinear kernels whilst avoiding the need to make use of Lagrange multipliers and duality theory. A fast iterative solution algorithm based on Cholesky decomposition with permutation of the support vectors is suggested as a solution method. The properties of our SVM formulation are analyzed and compared with standard SVMs using a simple example that can be illustrated graphically. The correctness and behavior of our solution (merely derived in the primal context of RLS) is demonstrated using a set of public benchmarking problems for both linear and nonlinear SVMs.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.
Resumo:
A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction method, to characterize the crack tip solution, and the Heaviside enrichment function for representing discontinuity due to a crack, has been used to model crack propagation through non-homogenous materials. In the case of interface crack propagation, the kink angle is predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are extracted using the interaction integral method. The proposed EFG method has been developed and applied for 2D case studies involving a crack in an orthotropic material, crack along an interface and a crack terminating at a bi-material interface, under mechanical or thermal loading; this is done to demonstrate the advantages and efficiency of the proposed methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are compared with existing results in the literature and are found to be in good agreement. An example of crack growth through a particle-reinforced composite materials, which may involve crack meandering around the particle, is reported.
Resumo:
Solving microkinetics of catalytic systems, which bridges microscopic processes and macroscopic reaction rates, is currently vital for understanding catalysis in silico. However, traditional microkinetic solvers possess several drawbacks that make the process slow and unreliable for complicated catalytic systems. In this paper, a new approach, the so-called reversibility iteration method (RIM), is developed to solve microkinetics for catalytic systems. Using the chemical potential notation we previously proposed to simplify the kinetic framework, the catalytic systems can be analytically illustrated to be logically equivalent to the electric circuit, and the reaction rate and coverage can be calculated by updating the values of reversibilities. Compared to the traditional modified Newton iteration method (NIM), our method is not sensitive to the initial guess of the solution and typically requires fewer iteration steps. Moreover, the method does not require arbitrary-precision arithmetic and has a higher probability of successfully solving the system. These features make it ∼1000 times faster than the modified Newton iteration method for the systems we tested. Moreover, the derived concept and the mathematical framework presented in this work may provide new insight into catalytic reaction networks.
Resumo:
Amphibian skin secretions are unique sources of bioactive molecules, particularly bioactive peptides. In this study, the skin secretion of the white-lipped tree frog (Litoria infrafrenata) was obtained to identify peptides with putative therapeutic potential. By utilizing skin secretion-derived mRNA, a cDNA library was constructed, a frenatin gene was cloned and its encoded peptides were deduced and confirmed using RP-HPLC, MALDI-TOF and MS/MS. The deduced peptides were identified as frenatin 4.1 (GFLEKLKTGAKDFASAFVNSIKGT) and a post-translationally modified peptide, frenatin 4.2 (GFLEKLKTGAKDFASAFVNSIK.NH2). Antimicrobial activity of the peptides was assessed by determining their minimal inhibitory concentrations (MICs) using standard model microorganisms. Through studying structure–activity relationships, analogues of the two peptides were designed, resulting in synthesis of frenatin 4.1a (GFLEKLKKGAKDFASALVNSIKGT) and frenatin 4.2a (GFLLKLKLGAKLFASAFVNSIK.NH2). Both analogues exhibited improved antimicrobial activities, especially frenatin 4.2a, which displayed significant enhancement of broad spectrum antimicrobial efficiency. The peptide modifications applied in this study, may provide new ideas for the generation of leads for the design of antimicrobial peptides with therapeutic applications.