16 resultados para Tree Species Classification
Resumo:
We have investigated levels of genetic diversity within and among seven remnant populations of Caesalpinia echinata Lam., an endangered species found as fragmented populations in three major areas around the coastal regions of Brazil. Using amplified fragment length polymorphism (AFLP) genetic markers, we detected levels of within-population genetic diversity ranging from 0.092 to 0.163, with the lowest values generally being found in the smallest populations. Estimates of between-population genetic differentiation were strongly correlated with geographical distance ( r = 0.884, p <0.001), which, along with a neighbour-joining phylogenetic analysis, strongly suggested high levels of genetic isolation by distance. Over half (62%) of the total genetic diversity was partitioned between populations, further highlighting the genetic distinctness of individual populations. Taken together, these results suggest that fragmentation has led to an increase in population differentiation between fragments of C. echinata. These formations will be of great value in the development of conservation plans for species exhibiting high levels of genetic differentiation due to fragmentation, such as indication of conservation unit size, which populations should be chosen as priority in conservation plans and which samples should be introduced in areas with a low number of individuals of brazilwood.
Resumo:
Fragmentation of natural populations can have negative effects at the genetic level, thus threatening their evolutionary potential. Many of the negative genetic impacts of population fragmentation can be ameliorated by gene flow and it has been suggested that in wind-pollinated tree species, high or even increased levels of gene flow are a feature of fragmented populations, although several studies have disputed this. We have used a combination of nuclear microsatellites and allele-specific PCR (AS-PCR) analysis of chloroplast single nucleotide polymorphisms (SNPs) to examine the levels and patterns of genetic diversity and population differentiation in fragmented populations of juniper (Juniperus communis) in Ireland and inform conservation programs for the species. Significant population differentiation was found for both chloroplast and nuclear markers, indicating restricted gene flow, particularly over larger geographic scales. For conservation purposes, the existence of genetically distinct clusters and geographically localised chloroplast haplotypes suggests that the concept of provenance should be taken into account when formulating augmentation or reintroduction strategies. Furthermore, the potential lack of seed dispersal and seedling establishment means that ex-situ approaches to seed and seedling management may have to be considered.
Resumo:
Investigations of geomorphology, geoarchaeology, pollen, palynofacies, and charcoal indicate the comparative scales and significance of palaeoenvironmental changes throughout the Holocene at the junction between the hyper-arid hot Wadi â??Arabah desert and the front of the Mediterranean-belt Mountains of Edom in southern Jordan through a series of climatic changes and episodes of intense mining and smelting of copper ores. Early Holocene alluviation followed the impact of Neolithic grazers but climate drove fluvial geomorphic change in the Late Holocene, with a major arid episode corresponding chronologically with the â??Little Ice Ageâ?? causing widespread alluviation. The harvesting of wood for charcoal may have been sufficiently intense and widespread to affect the capacity of intensively harvested tree species to respond to a period of greater precipitation deduced for the Roman-Byzantine period - a property that affects both taphonomic and biogeographical bases for the interpretation of palynological evidence from arid-lands with substantial industrial histories. Studies of palynofacies have provided a record of human and climatic causes of soil erosion, and the changing intensity of the use of fire over time. The patterns of vegetational, climatic change and geomorphic changes are set out for this area for the last 8000 years.
Resumo:
We present a database of late-Quaternary plant macrofossil records for northern Eurasia (from 23 degrees to 180 degrees E and 46 degrees to 76 degrees N) comprising 281 localities, over 2300 samples and over 13,000 individual records. Samples are individually radiocarbon dated or are assigned ages via age models fitted to sequences of calibrated radiocarbon dates within a section. Tree species characteristic of modern northern forests (e.g. Picea, Larix, tree-Betula) are recorded at least intermittently from prior to the last glacial maximum (LGM), through the LGM and Lateglacial, to the Holocene, and some records locate trees close to the limits of the Scandinavian ice sheet, supporting the hypothesis that some taxa persisted in northern refugia during the last glacial cycle. Northern trees show differing spatio-temporal patterns across Siberia: deciduous trees were widespread in the Lateglacial, with individuals occurring across much of their contemporary ranges, while evergreen conifers expanded northwards to their range limits in the Holocene. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The island of Mauritius offers the opportunity to study the poorly understood vegetation response to climate change on a small tropical oceanic island. A high-resolution pollen record from a 10 m long peat core from Kanaka Crater (560 m elevation, Mauritius, Indian Ocean) shows that vegetation shifted from a stable open wet forest Last Glacial state to a stable closed-stratified-tall-forest Holocene state. An ecological threshold was crossed at ∼11.5 cal ka BP, propelling the forest ecosystem into an unstable period lasting ∼4000 years. The shift between the two steady states involves a cascade of four abrupt (<150 years) forest transitions in which different tree species dominated the vegetation for a quasi-stable period of respectively ∼1900, ∼1100 and ∼900 years. We interpret the first forest transition as climate-driven, reflecting the response of a small low topography oceanic island where significant spatial biome migration is impossible. The three subsequent forest transitions are not evidently linked to climate events, and are suggested to be driven by internal forest dynamics. The cascade of four consecutive events of species turnover occurred at a remarkably fast rate compared to changes during the preceding and following periods, and might therefore be considered as a composite tipping point in the ecosystem. We hypothesize that wet gallery forest, spatially and temporally stabilized by the drainage system, served as a long lasting reservoir of biodiversity and facilitated a rapid exchange of species with the montane forests to allow for a rapid cascade of plant associations.
Resumo:
Heritable variation in plant secondary compounds in dominant species has been hypothesised to effect ecosystem function and the structure of associated assemblages of plants, microbes and animals. The functioning of this extended phenotype in relation to the understorey vegetation composition was tested within a boreal forest system dominated by Pinus sylvestris which contains a range of monoterpenes, the composition of which is largely under genetic control. A variance partitioning approach was adopted to identify the relative importance of tree chemistry, environment, spatial location and tree architecture in controlling the distribution of species in the ground flora under individual trees. The monoterpene composition of the pine needles appeared to contribute significantly to controlling understorey vegetation composition, but was less important than environmental factors, though similar to spatial factors. Thus there appears to be a link between variation in the chemical composition of the single, dominant tree species within this system and the pattern of occurrence and abundance in other species at the same trophic level.
Resumo:
Aim Species generally become rarer and more patchily distributed as the margins of their ranges are approached. We predicted that in such marginal sites, tree species would tend to occur where some key environmental factors are at particularly favourable levels, compensating in part for the low overall suitability of marginal sites.
Location The article considers the spatial distributions of trees in Southeast Alaska (the Alaskan 'panhandle').
Methods We quantified range marginality using spatial distributions of eight tree species across more than one thousand surveyed sites in Southeast Alaska. For each species we derived a site core/margin index using a three-dimensional trend surface generated from logistic regression on site coordinates. For each species, the relationships between the environmental factors slope, aspect and site marginality were then compared for occupied and unoccupied sets of sites.
Results We found that site slope is important for more Alaskan tree species than aspect. Three out of eight had a significant core/margin by occupied/unoccupied interaction, tending to be present in significantly shallower-sloped (more favourable) sites in the marginal areas than the simple core/margin trend predicted. For site aspect, one species had a significant interaction, selecting potentially more favourable northerly aspects in marginal areas. A finer-scale analysis based on the same data came to the same overall conclusions.
Conclusions There is evidence that several tree species in Alaska tend to occur in especially favourable sites in marginal areas. In these marginal areas, these species amplify habitat preferences shown in core areas.
Resumo:
Experiments were conducted to determine if two ectomycorrhizal fungi (Paxillus involutus and Suillus variegatus) could degrade 2,4-dichlorophenol both in axenic liquid culture and during symbiosis with a host tree species Pinus sylvestris. Both fungi readily degraded 2,4- dichlorophenol in batch culture with similar rates of mineralization on a biomass basis. Up to 17% of the 2,4-dichlorophenol was mineralized over a 17 day period. Growth of the fungi in symbiosis with P. sylvestris stimulated greater mineralization than when fungi were grown in absence of the host. S. variegatus was more efficient than P. involutus (in the presence of P. sylveslris) at mineralizing 2,4- dichlorophenol. Mineralization in vermiculite culture was greatly reduced compared to liquid culture. Only 3% of the 2,4-dichlorophenol was mineralized after 13 days in vermiculite culture for the most efficient degrading treatment.
Resumo:
Background/Question/Methods
Assessing the large scale impact of deer populations on forest structure and composition is important because of their increasing abundance in many temperate forests. Deer are invasive animals and sometimes thought to be responsible for immense damage to New Zealand’s forests. We report demographic changes taking place among 40 widespread indigenous tree species over 20 years, following a period of record deer numbers in the 1950s and a period of extensive hunting and depletion of deer populations during the 1960s and 1970s.
Results/Conclusions
Across a network of 578 plots there was an overall 13% reduction in sapling density of our study species with most remaining constant and a few declining dramatically. The effect of suppressed recruitment when deer populations were high was evident in the small tree size class (30 – 80 mm dbh). Stem density decreased by 15% and species with the greatest annual decreases in small tree density were those which have the highest rates of sapling recovery in exclosures indicating that deer were responsible. Densities of large canopy trees have remained relatively stable. There were imbalances between mortality and recruitment rates for 23 of the 40 species, 7 increasing and 16 in decline. These changes were again linked with sapling recovery in exclosures; species which recovered most rapidly following deer exclusion had the greatest net recruitment deficit across the wider landscape, indicating recruitment suppression by deer as opposed to mortality induced by disturbance and other herbivores. Species are not declining uniformly across all populations and no species are in decline across their entire range. Therefore we predict that with continued deer presence some forests will undergo compositional changes but that none of the species tested will become nationally extinct.
Impacts of invasive browsers on demographic rates and forest structure in New Zealand. Available from: http://www.researchgate.net/publication/267285500_Impacts_of_invasive_browsers_on_demographic_rates_and_forest_structure_in_New_Zealand [accessed Oct 9, 2015].
Resumo:
Hedgerows represent important components of agri-environment landscapes that are increasingly coming under threat from climate change, emergent diseases, invasive species and land use change. Given that population genetic data can be used to inform best-practice management strategies for woodland and hedgerow tree species, we carried out a study on hawthorn (Crataegus monogyna Jacq.), a key component of hedgerows, on a regional basis using a combination of nuclear and chloroplast microsatellite markers. We found that levels of genetic diversity were high and comparable to, or slightly higher than, other tree species from the same region. Levels of population differentiation for both sets of markers, however, were extremely low, suggesting extensive gene flow via both seed and pollen. These findings suggest that a holistic approach to woodland management, one which does not necessarily rely on the concept of “seed zones” previously suggested, but which also takes into account populations with high and/or rare chloroplast (i.e. seed-specific) genetic variation, might be the best approach to restocking and replanting.