2 resultados para Transitive Inferences
Resumo:
We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.
Resumo:
Recently, Bès, Martin, and Sanders [11] provided examples of disjoint hypercyclic operators which fail to satisfy the Disjoint Hypercyclicity Criterion. However, their operators also fail to be disjoint weakly mixing. We show that every separable, infinite dimensional Banach space admits operators T1,T2,…,TN with N⩾2 which are disjoint weakly mixing, and still fail to satisfy the Disjoint Hypercyclicity Criterion, answering a question posed in [11]. Moreover, we provide examples of disjoint hypercyclic operators T1, T2 whose corresponding set of disjoint hypercyclic vectors is nowhere dense, answering another question posed in [11]. In fact, we explicitly describe their set of disjoint hypercyclic vectors. Those same disjoint hypercyclic operators fail to be disjoint topologically transitive. Lastly, we create examples of two families of d-hypercyclic operators which fail to have any d-hypercyclic vectors in common.