141 resultados para Transgenic mouse


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Platelet glycoprotein (GP) Ib-IX-V supports platelet adhesion on damaged vascular walls by binding to von Willebrand factor (VWF). For several decades it has been recognized that the alpha-subunit of GP (GPIb alpha) also binds thrombin but the physiological relevance, if any, of this interaction was unknown. Previous studies have shown that a sulfated tyrosine 276 (Tyr276) is essential for thrombin binding to GPIb alpha.Objectives: This study investigated the in vivo relevance of GPIb alpha residue Tyr276 in hemostasis and thrombosis.Methods: Transgenic mouse colonies expressing the normal human GPIb alpha subunit or a mutant human GPIb alpha containing a Phe substitution for Tyr276 (hTg(Y276F)) were generated. Both colonies were bred to mice devoid of murine GPIb alpha.Results: Surface-expressed GPIb alpha levels and platelet counts were similar in both colonies. hTg(Y276F) platelets were significantly impaired in binding alpha-thrombin but displayed normal binding to type I fibrillar collagen and human VWF in the presence of ristocetin. In vivo thrombus formation as a result of chemical damage (FeCl3) demonstrated that hTg(Y276F) mice have a delayed time to occlusion followed by unstable blood flow indicative of embolization. In models of laser-induced injury, thrombi developing in hTg(Y276F) animals were also less stable.Conclusions: The results demonstrate that GPIb alpha residue Tyr276 is physiologically important, supporting stable thrombus formation in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple sclerosis is considered a disease of complex autoimmune etiology, yet there remains a lack of consensus as to specific immune effector mechanisms. Recent analyses of experimental autoimmune encephalomyelitis, the common mouse model of multiple sclerosis, have investigated the relative contribution of Th1 and Th17 CD4 T cell subsets to initial autoimmune central nervous system (CNS) damage. However, inherent in these studies are biases influenced by the adjuvant and toxin needed to break self-tolerance. We investigated spontaneous CNS disease in a clinically relevant, humanized, T cell receptor transgenic mouse model. Mice develop spontaneous, ascending paralysis, allowing unbiased characterization of T cell immunity in an HLA-DR15-restricted T cell repertoire. Analysis of naturally progressing disease shows that IFN?(+) cells dominate disease initiation with IL-17(+) cells apparent in affected tissue only once disease is established. Tregs accumulate in the CNS but are ultimately ineffective at halting disease progression. However, ablation of Tregs causes profound acceleration of disease, with uncontrolled infiltration of lymphocytes into the CNS. This synchronous, severe disease allows characterization of the responses that are deregulated in exacerbated disease: the correlation is with increased CNS CD4 and CD8 IFN? responses. Recovery of the ablated Treg population halts ongoing disease progression and Tregs extracted from the central nervous system at peak disease are functionally competent to regulate myelin specific T cell responses. Thus, in a clinically relevant mouse model of MS, initial disease is IFN? driven and the enhanced central nervous system responses unleashed through Treg ablation comprise IFN? cytokine production by CD4 and CD8 cells, but not IL-17 responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Matrilysin-1 (also called matrix metalloproteinase-7) is expressed in injured lung and in cancer but not in normal epithelia. Bronchiolization of the alveoli (BOA), a potential precursor of lung cancer, is a histologically distinct type of metaplasia that is composed of cells resembling airway epithelium in the alveolar compartment. We demonstrate that there is increased expression of matrilysin-1 in human lesions and BOA in the CC10-human achaete-scute homolog-1 transgenic mouse model. Forced expression of the matrilysin-1 gene in immortalized human normal airway epithelial BEAS-2B and HPLD1 cells, which do not normally express matrilysin-1, promoted cellular migration, suggesting a functional link for BOA formation via bronchiolar cell migration. In addition, matrilysin-1 stimulated proliferation and inhibited Fas-induced apoptosis, while a knockdown by RNA interference decreased cell growth, migration, and increased sensitivity to apoptosis. Western blotting demonstrated increased levels of phospho-p38 and phospho-Erk1/2 kinases after matrilysin-1 expression. Gene expression analysis uncovered several genes that were related to cell growth, migration/movement, and death, which could potentially facilitate bronchiolization. In vivo, the formation of BOA lesions was reduced when CC10-human achaete-scute homolog-1 mice were crossed with matrilysin-1 null mice and was correlated with reduced matrilysin-1 expression in BOA. We conclude that matrilysin-1 may play an important role in the bronchiolization of alveoli by promoting proliferation, migration, and attenuation of apoptosis involving multiple genes in the MAP kinase pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The aberrant transcription in cancer of genes normally associated with embryonic tissue differentiation at various organ sites may be a hallmark of tumour progression. For example, neuroendocrine differentiation is found more commonly in cancers destined to progress, including prostate and lung. We sought to identify proteins which are involved in neuroendocrine differentiation and differentially expressed in aggressive/metastatic tumours.

RESULTS: Expression arrays were used to identify up-regulated transcripts in a neuroendocrine (NE) transgenic mouse model of prostate cancer. Amongst these were several genes normally expressed in neural tissues, including the pro-neural transcription factors Ascl1 and Hes6. Using quantitative RT-PCR and immuno-histochemistry we showed that these same genes were highly expressed in castrate resistant, metastatic LNCaP cell-lines. Finally we performed a meta-analysis on expression array datasets from human clinical material. The expression of these pro-neural transcripts effectively segregates metastatic from localised prostate cancer and benign tissue as well as sub-clustering a variety of other human cancers.

CONCLUSION: By focussing on transcription factors known to drive normal tissue development and comparing expression signatures for normal and malignant mouse tissues we have identified two transcription factors, Ascl1 and Hes6, which appear effective markers for an aggressive phenotype in all prostate models and tissues examined. We suggest that the aberrant initiation of differentiation programs may confer a selective advantage on cells in all contexts and this approach to identify biomarkers therefore has the potential to uncover proteins equally applicable to pre-clinical and clinical cancer biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease.

METHODS: We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively.

RESULTS: Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples.

CONCLUSIONS: These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current study examined behavioral and histological effects of amyloid-ß (Aß) protein precursor (AßPP) overexpression in transgenic (Tg) rats created using the same gene, mutation, and promoter as the Tg2576 mouse model of Alzheimer's disease (AD). Male Tg+ rats were bred with female wild-type rats to generate litters of hemizygous Tg+ and Tg- offspring. Tg+ rats and Tg- littermates were tested for memory deficits at 4, 8, and 12 months old using a water-maze procedure. There were no significant behavioral differences between Tg+ rats and Tg- littermates at 4 months old but there were significant differences at 8 and 12 months old, and in probe trials at 8 and 12 months old, the Tg+ rats spent significantly less time and covered less distance in the platform zone. Under acquisition of a fixed-consecutive number schedule at 3 months old, Tg- littermates demonstrated a longer latency to learning the response rule than Tg+ rats; while this might seem paradoxical, it is consistent with the role of overexpression of AßPP in learning. Histological analyses revealed activated astrocytes in brains of Tg+ rats but not Tg- littermates at 6 months old, and thioflavin-S positive staining in the hippocampus and cortex of 17-month old Tg+ rats but not Tg- littermates. Quantification of Aß load in the brain at 22 months indicated high levels of Aß38, Aß40, and Aß42 in the Tg+ rats. These data suggest this model might provide a valuable resource for AD research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac failure occurs when the heart fails to adapt to chronic stresses. Reactive oxygen species (ROS)-dependent signaling is implicated in cardiac stress responses but the role of different ROS sources remains unclear. Here, we report that NADPH oxidase-4 (Nox4) facilitates cardiac adaptation to chronic stress. Unlike other Nox proteins, Nox4 activity is regulated mainly by its expression level which increased in cardiomyocytes during stresses such as pressure overload or hypoxia. To investigate the functional role of Nox4 during the cardiac response to stress, we generated mice with a genetic deletion of Nox4 or a cardiomyocyte-targeted overexpression of Nox4. Basal cardiac function was normal in both models but Nox4-null animals developed exaggerated contractile dysfunction, hypertrophy and cardiac dilatation during exposure to chronic overload whereas Nox4-transgenic mice were protected. Investigation of mechanisms underlying this protective effect revealed a significant Nox4-dependent preservation of myocardial capillary density after pressure overload. Nox4 enhanced stress-induced activation of cardiomyocyte Hif1 and the release of VEGF, resulting in an increased paracrine angiogenic activity. These data indicate that cardiomyocyte Nox4 is a novel inducible regulator of myocardial angiogenesis, a key determinant of cardiac adaptation to overload stress. Our results also have wider relevance to the use of non-specific antioxidant approaches in cardiac disease and may provide an explanation for the failure of such strategies in many settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of recent studies have indicated that bone marrow cells can differentiate into various cells of ectodermal, mesodermal, and endodermal origins when transplanted into the body. However, the problems associated with those experiments such as the long latent period, rareness of the event, and difficulty in controlling the processes have hampered detailed mechanistic studies. In the present study, we examined the potency of mouse bone marrow cells to differentiate into cells comprising skin tissues using a skin reconstitution assay. Bone marrow cells from adult green fluorescent protein (GFP)-transgenic mice were transplanted in a mixture of embryonic mouse skin cells (17.5 days post-coitus) onto skin defects made on the backs of nude mice. Within 3 weeks, fully differentiated skin with hair was reconstituted. GFP-positive cells were found in the epidermis, hair follicles, sebaceous glands, and dermis. The localization and morphology of the cells, results of immunohistochemistry, and results of specific staining confirmed that the bone marrow cells had differentiated into epidermal keratinocytes, sebaceous gland cells, follicular epithelial cells, dendritic cells, and endothelial cells under the present conditions. These results indicate that this system is suitable for molecular and cellular mechanistic studies on differentiation of stem cells to various epidermal and dermal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Squamous cell carcinoma accounts for 20% of all human lung cancers and is strongly linked to cigarette smoking. It develops through premalignant changes that are characterized by high levels of keratin 14 (K14) expression in the airway epithelium and evolve through basal cell hyperplasia, squamous metaplasia and dysplasia to carcinoma in situ and invasive carcinoma. In order to explore the impact of K14 in the pulmonary epithelium that normally lacks both squamous differentiation and K14 expression, human keratin 14 gene hK14 was constitutively expressed in mouse airway progenitor cells using a mouse Clara cell specific 10 kDa protein (CC10) promoter. While the lungs of CC10-hK14 transgenic mice developed normally, we detected increased expression of K14 and the molecular markers of squamous differentiation program such as involucrin, loricrin, small proline-rich protein 1A, transglutaminase 1 and cholesterol sulfotransferase 2B1. In contrast, wild-type lungs were negative. Aging CC10-hK14 mice revealed multifocal airway cell hyperplasia, occasional squamous metaplasia and their lung tumors displayed evidence for multidirectional differentiation. We conclude that constitutive expression of hK14 initiates squamous differentiation program in the mouse lung, but fails to promote squamous maturation. Our study provides a novel model for assessing the mechanisms of premalignant lesions in vivo by modifying differentiation and proliferation of airway progenitor cells. © The Author 2008. Published by Oxford University Press. All rights reserved.