3 resultados para Transfer of learning
Resumo:
Combined conduction–convection–radiation heat transfer is investigated numerically in a micro-channel filled with a saturated cellular porous medium, with the channel walls held at a constant heat flux. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous–fluid system are studied by considering hydrodynamically fully developed flow and applying the Darcy–Brinkman flow model. One energy equation model based on the local thermal equilibrium condition is adopted to evaluate the temperature field within the porous medium. Combined conduction and radiation heat transfer is treated as an effective conduction process with a temperature-dependent effective thermal conductivity. Results are reported in terms of the average Nusselt number and dimensionless temperature distribution, as a function of velocity slip coefficient, temperature jump coefficient, porous medium shape parameter and radiation parameters. Results show that increasing the radiation parameter (Tr)(Tr) and the temperature jump coefficient flattens the dimensionless temperature profile. The Nusselt numbers are more sensitive to the variation in the temperature jump coefficient rather than to the velocity slip coefficient. Such that for high porous medium shape parameter, the Nusselt number is found to be independent of velocity slip. Furthermore, it is found that as the temperature jump coefficient increases, the Nusselt number decrease. In addition, for high temperature jump coefficients, the Nusselt number is found to be insensitive to the radiation parameters and porous medium shape parameter. It is also concluded that compared with the conventional macro-channels, wherein using a porous material enhances the rate of heat transfer (up to about 40 % compared to the clear channel), insertion of a porous material inside a micro-channel in slip regime does not effectively enhance the rate of heat transfer that is about 2 %.
Resumo:
Introduction
This paper reports to an exercise in evaluating poster group work and poster presentation and the extra learning and skill acquisition that this can provide to nursing students, through a creative and stimulating assessment method. Much had been written about the benefits of using posters as an assessment method, yet there appears to be a lack of research that captures the student experience.
Aim
This evaluative study sought to evaluate the student experience by using a triangulation approach to evaluation:
Methodology
All students from the February 2015 nursing intake, were eligible to take part (80 students) of which 71 participated (n=71). The poster group presentations took place at the end of their first phase of year one teaching and the evaluation took place at the end of their first year as undergraduate. Evaluation involved;
1. Quantitative data by questionnaires
2. Qualitative data from focus group discussions
Results
A number of key themes emerged from analysis of the data which captured the “added value” of learning from the process of poster assessment including:
Professionalism: developing time keeping skills, presenting skills.
Academic skills: developing literature search, critic and reporting
Team building and collaboration
Overall 88% agreed that the process furnished them with additional skills and benefits above the actual production of the poster, with 97% agreeing that these additional skills are important skills for a nurse.
Conclusion
These results would suggest that the process of poster development and presentation furnish student nurses with many additional skills that they may not acquire through other types of assessment and are therefore beneficial. The structure of the assessment encourages a self-directed approach so students take control of the goals and purposes of learning. The sequential organization of the assessment guides students in the transition from dependent to self-directed learners.
Resumo:
Numerical predictions of the turbulent flow and heat transfer of a stationary duct with square ribs 45° angled to the main flow direction are presented. The rib height to channel hydraulic diameter is 0.1, the rib pitch to rib height is 10. The calculations have been carried out for a bulk Reynolds number of 50,000. The flows generated by ribs are dominated by separating and reattaching shear layers with vortex shedding and secondary flows in the cross-section. The hybrid RANS-LES approach is adopted to simulate such flows at a reasonable computation cost. The capability of the various versions of DES method, depending the RANS model, such as DES-SA, DES-RKE, DES-SST, have been compared and validated against the experiment. The significant effect of RANS model on the accuracy of the DES prediction has been shown. The DES-SST method, which was able to reproduce the correct physics of flow and heat transfer in a ribbed duct showed better performance than others.