56 resultados para Transfection transitoire
Resumo:
BRCA1 is a well described breast cancer susceptibility gene thought to be involved primarily in DNA repair. However, mutation within the BRCA1 transcriptional domain is also implicated in neoplastic transformation of mammary epithelium, but responsible mechanisms are unclear. Here we show in a rat mammary model system that wild type (WT) BRCA1 specifically represses the expression of osteopontin (OPN), a multifunctional estrogen-responsive gene implicated in oncogenic transformation, particularly that of the breast. WT.BRCA1 selectively binds OPN-activating transcription factors estrogen receptor alpha, AP-1, and PEA3, inhibits OPN promoter transactivation, and suppresses OPN mRNA and protein both from an endogenous gene and a relevant model inducible gene. WT.BRCA1 also inhibits OPN-mediated neoplastic transformation characterized by morphology change, anchorage-independent growth, adhesion to fibronectin, and invasion through Matrigel. A mutant BRCA1 allele (Mut.BRCA1) associated with familial breast cancer lacks OPN suppressor effects, binds to WT.BRCA1, and impedes WT.BRCA1 suppression of OPN. Stable transfection of rat breast tumor cell lines with Mut.BRCA1 dramatically up-regulates OPN protein and induces anchorage independent growth. In human primary breast cancer, BRCA1 mutation is significantly associated with OPN overexpression. Taken together, these data suggest that BRCA1 mutation may confer increased tissue-specific cancer risk, in part by disruption of BRCA1 suppression of OPN gene transcription.
Resumo:
Small 1,000-bp fragments of genomic DNA obtained from human malignant breast cancer cell lines when transfected into a benign rat mammary cell line enhance transcription of the osteopontin gene and thereby cause the cells to metastasize in syngeneic rats. To identify the molecular events underlying this process, transient cotransfections of an osteopontin promoter-reporter construct and fragments of one metastasis-inducing DNA (Met-DNA) have identified the active components in the Met-DNA as the binding sites for the T-cell factor (Tcf) family of transcription factors. Incubation of cell extracts with active DNA fragments containing the sequence CAAAG caused retardation of their mobilities on polyacrylamide gels, and Western blotting identified Tcf-4, beta-catenin, and E-cadherin in the relevant DNA complexes in vitro. Transfection of an expression vector for Tcf-4 inhibited the stimulated activity of the osteopontin promoter-reporter construct caused by transiently transfected active fragments of Met-DNA or permanently transfected Met-DNA. This stimulated activity of the osteopontin promoter-reporter construct is accompanied by an increase in endogenous osteopontin mRNA but not in fos or actin mRNAs in the transfected cells. Permanent transfection of the benign rat mammary cell line with a 20-bp fragment from the Met-DNA containing the Tcf recognition sequence CAAAG caused an enhanced permanent production of endogenous osteopontin protein in vitro and induced the cells to metastasize in syngeneic rats in vivo. The corresponding fragment without the CAAAG sequence was without either effect. Therefore, the regulatory effect of the C9-Met-DNA is exerted, at least in part, by a CAAAG sequence that can sequester the endogenous inhibitory Tcf-4 and thereby promote transcription of osteopontin, the direct effector of metastasis in this system.
Resumo:
Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.
Resumo:
Members of the evolutionarily conserved septin family of genes are emerging as key components of several cellular processes including membrane trafficking, cytokinesis, and cell-cycle control events. SEPT9 has been shown to have a complex genomic architecture, such that up to 15 different isoforms are possible by the shuffling of five alternate amino termini and three alternate carboxy termini. Genomic and transcriptional alterations of SEPT9 have been associated with neoplasia. The present study has used a Sept9-specific antibody to determine the pattern of isoform expression in a range of tumour cell lines. Western blot analysis indicated considerable variation in the relative amounts and isoform content of Sept9. Immunofluorescence studies showed a range of patterns of cytoplasmic localization ranging from mainly particulate to mainly filamentous. Expression constructs were also generated for each amino terminal isoform to investigate the patterns of localization of individual isoforms and the effects on cells of ectopic expression. The present study shows that the epsilon isoform appears filamentous in this overexpression system while the remaining isoforms are particulate and cytoplasmic. Transient transfection of individual constructs into tumour cell lines results in cell-cycle perturbation with a G2/M arrest and dramatic growth suppression, which was greatest in cell lines with the lowest amounts of endogenous Sept9. Similar phenotypic observations were made with GTP-binding mutants of all five N-terminal variants of Sept9. However, dramatic differences were observed in the kinetics of accumulation of wild-type versus mutant septin protein in transfected cells. In conclusion, the present study shows that the expression patterns of Sept9 protein are very varied in a panel of tumour cell lines and the functional studies are consistent with a model of septin function as a component of a molecular scaffold that contributes to diverse cellular functions. Alterations in the levels of Sept9 protein by overexpression of individual isoforms can clearly perturb cellular behaviour and may thus provide a mechanistic explanation for observations of deranged septin expression in neoplasia. Copyright © 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.
Resumo:
This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity.
Resumo:
Nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) encode a nonstructural protein, called nsp10 in arteriviruses and nsp13 in coronaviruses, that is comprised of a C-terminal superfamily 1 helicase domain and an N-terminal, putative zinc-binding domain (ZBD). Previously, mutations in the equine arteritis virus (EAV) nsp10 ZBD were shown to block arterivirus reproduction by disrupting RNA synthesis and possibly virion biogenesis. Here, we characterized the ATPase and helicase activities of bacterially expressed mutant forms of nsp10 and its human coronavirus 229E ortholog, nsp13, and correlated these in vitro activities with specific virus phenotypes. Replacement of conserved Cys or His residues with Ala proved to be more deleterious than Cys-for-His or His-for-Cys replacements. Furthermore, denaturation-renaturation experiments revealed that, during protein refolding, Zn2+ is essential for the rescue of the enzymatic activities of nidovirus helicases. Taken together, the data strongly support the zinc-binding function of the N-terminal domain of nidovirus helicases. nsp10 ATPase/helicase deficiency resulting from single-residue substitutions in the ZBD or deletion of the entire domain could not be complemented in trans by wild-type ZBD, suggesting a critical function of the ZBD in cis. Consistently, no viral RNA synthesis was detected after transfection of EAV full-length RNAs encoding ATPase/helicase-deficient nsp10 into susceptible cells. In contrast, diverse phenotypes were observed for mutants with enzymatically active nsp10, which in a number of cases correlated with the activities measured in vitro. Collectively, our data suggest that the ZBD is critically involved in nidovirus replication and transcription by modulating the enzymatic activities of the helicase domain and other, yet unknown, mechanisms.
Resumo:
The elevated levels of beta1,4-galactosyltransferase I (GalT I; EC 2.4.1.38) are detected in highly metastatic lung cancer PGBE1 cells compared with its less metastatic partner PGLH7 cells. Decreasing the GalT I surface expression by small interfering RNA or interfering with the surface of GalT I function by mutation inhibited cell adhesion on laminin, the invasive potential in vitro, and tyrosine phosphorylation of focal adhesion kinase. The mechanism by which GalT I activity is up-regulated in highly metastatic cells remains unclear. To investigate the regulation of GalT I expression, we cloned the 5'-region flanking the transcription start point of the GalT I gene (-1653 to +52). Cotransfection of the GalT I promoter/luciferase reporter and the Ets family protein E1AF expression plasmid increased the luciferase reporter activity in a dose-dependent manner. By deletion and mutation analyses, we identified an Ets-binding site between nucleotides -205 and -200 in the GalT I promoter that was critical for responsiveness to E1AF. It was identified that E1AF could bind to and activate the GalT I promoter by electrophoretic mobility shift assay in PGLH7 cells and COS1 cells. A stronger affinity of E1AF for DNA has contributed to the elevated expression of GalT I in PGBE1 cells. Stable transfection of the E1AF expression plasmid resulted in increased GalT I expression in PGLH7 cells, and stable transfectants migrated faster than control cells. Meanwhile, the content of the beta1,4-Gal branch on the cell surface was increased in stably transfected PGLH7 cells. GalT I expression can also be induced by epidermal growth factor and dominant active Ras, JNK1, and ERK1. These data suggest an essential role for E1AF in the activation of the human GalT I gene in highly metastatic lung cancer cells.
Resumo:
Driving high-level transgene expression in a tumour-specific manner remains a key requirement in the development of cancer gene therapy. We have previously demonstrated the strong anticancer effects of generating abnormally high levels of intracellular NO• following the overexpression of the inducible nitric oxide synthase (iNOS) gene. Much of this work has focused on utilizing exogenously activated promoters, which have been primarily induced using X-ray radiation. Here we further examine the potential of the pE9 promoter, comprising a combination of nine CArG radio-responsive elements, to drive the iNOS transgene. Effects of X-ray irradiation on promoter activity were compared in vitro under normoxic conditions and various degrees of hypoxia. The pE9 promoter generated high-level transgene expression, comparable with that achieved using the constitutively driven cytomegalovirus promoter. Furthermore, the radio-resistance of radiation-induced fibrosarcoma-1 (RIF-1) mouse sarcoma cells exposed to 0.1 and 0.01% O2 was effectively eliminated following transfection with the pE9/iNOS construct. Significant inhibition of tumour growth was also observed in vivo following direct intratumoural injection of the pE9/iNOS construct compared to empty vector alone (P<0.001) or to a single radiation dose of 10?Gy (P<0.01). The combination of both therapies resulted in a significant 4.25 day growth delay compared to the gene therapy treatment alone (P<0.001). In summary, we have demonstrated the potential of the pE9/iNOS construct for reducing radio-resistance conferred by tumour cell hypoxia in vitro and in vivo, with greater tumour growth delay observed following the treatment with the gene therapy construct as compared with radiotherapy alone.
Resumo:
Osteopontin (OPN) is a phosphorylated glycoprotein that binds to alpha v-containing integrins and is important in malignant transformation and cancer. Previously, we have utilized suppressive subtractive hybridization between mRNAs isolated from the Rama 37 (R37) rat mammary cell line and a subclone rendered invasive and metastatic by stable transfection with an expression vector for OPN to identify RAN GTPase (RAN) as the most overexpressed gene, in addition to that of OPN. Here we show that transfection of noninvasive R37 cells with an expression vector for RAN resulted in increased anchorage-independent growth, cell attachment and invasion through Matrigel in vitro, and metastasis in syngeneic rats. This induction of a malignant phenotype was induced independently of the expression of OPN, and was reversed by specifically reducing the expression of RAN using small-interfering RNAs. By using a combination of mutant protein and inhibitors, it was found that RAN signal transduction occurred through the c-Met receptor and PI3 kinase. This study therefore identifies RAN as a novel effector of OPN-mediated malignant transformation and some of its downstream signaling events in a mammary epithelial model of cancer invasion/metastasis. <br/> <br/>
Resumo:
The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.
Resumo:
Osteopontin is a secreted, integrin-binding and phosphorylated acidic glycoprotein, which has an important role in tumour progression. We have shown that Wnt, Ets, AP-1, c-jun and beta-catenin/Lef-1/Tcf-1 stimulates OPN transcription in rat mammary carcinoma cells by binding to a specific promoter sequence. However, co-repressors of OPN have not been identified. In this study, we have used the bacterial two-hybrid system to isolate cDNA-encoding proteins that bind to OPN and modulate its role in malignant transformation. Using this approach we isolated interferon-induced transmembrane protein 3 gene (IFITM3) as a potential protein partner. We show that IFITM3 and OPN interact in vitro and in vivo and that IFITM3 reduces osteopontin (OPN) mRNA expression, possibly by affecting OPN mRNA stability. Stable transfection of IFITM3 inhibits OPN, which mediates anchorage-independent growth, cell adhesion and cell invasion. Northern blot analysis revealed an inverse mRNA expression pattern of IFITM3 and OPN in human mammary cell lines. Inhibition of IFITM3 by antisense RNA promoted OPN protein expression, enhanced cell invasion by parental benign non-invasive Rama 37 cells, indicating that the two proteins interact functionally as well. We also identified an IFITM3 DNA-binding domain, which interacts with OPN, deletion of which abolished its inhibitive effect on OPN. This work has shown for the first time that IFITM3 physically interacts with OPN and reduces OPN mRNA expression, which mediates cell adhesion, cell invasion, colony formation in soft agar and metastasis in a rat model system. Oncogene (2010) 29, 752-762; doi: 10.1038/onc.2009.379; published online 9 November 2009
Resumo:
The Jagged/Notch pathway has been implicated in TGFß1 responses in epithelial cells in diabetic nephropathy and other fibrotic conditions in vivo. Here, we identify that Jagged/Notch signalling is required for a subset of TGFß1-stimulated gene responses in human kidney epithelial cells in vitro. TGFß1 treatment of HK-2 and RPTEC cells for 24 h increased Jagged1 (a Notch ligand) and Hes1 (a Notch target) mRNA. This response was inhibited by co-incubation with Compound E, an inhibitor of ?-secretase (GSI), an enzyme required for Notch receptor cleavage and transcription regulation. In both cell types, TGFß1-responsive genes associated with epithelial–mesenchymal transition such as E-cadherin and vimentin were also affected by ?-secretase inhibition, but other TGFß1 targets such as connective tissue growth factor (CTGF) and thrombospondin-1 (THBS1) were not. TGFß1-induced changes in Jagged1 expression preceded EMT-associated gene changes, and co-incubation with GSI altered TGFß1-induced changes in cell shape and cytoskeleton. Transfection of cells with the activated, cleaved form of Notch (NICD) triggered decreased expression of E-cadherin in the absence of TGFß1, but did not affect a-smooth muscle actin expression, suggesting differential requirements for Notch signalling within the TGFß1-responsive gene subset. Increased Jagged1 expression upon TGFß1 exposure required Smad3 signalling, and was also regulated by PI3K and ERK. These data suggest that Jagged/Notch signalling is required for a subset of TGFß1-responsive genes, and that complex signalling pathways are involved in the crosstalk between TGFß1 and Notch cascades in kidney epithelia.<br/><br/><br/>--------------------------------------------------------------------------------<br/>