34 resultados para Towards Seamless Integration of Geoscience Models and Data
Towards an understanding of the causes and effects of software requirements change: two case studies
Resumo:
Changes to software requirements not only pose a risk to the successful delivery of software applications but also provide opportunity for improved usability and value. Increased understanding of the causes and consequences of change can support requirements management and also make progress towards the goal of change anticipation. This paper presents the results of two case studies that address objectives arising from that ultimate goal. The first case study evaluated the potential of a change source taxonomy containing the elements ‘market’, ‘organisation’, ‘vision’, ‘specification’, and ‘solution’ to provide a meaningful basis for change classification and measurement. The second case study investigated whether the requirements attributes of novelty, complexity, and dependency correlated with requirements volatility. While insufficiency of data in the first case study precluded an investigation of changes arising due to the change source of ‘market’, for the remainder of the change sources, results indicate a significant difference in cost, value to the customer and management considerations. Findings show that higher cost and value changes arose more often from ‘organisation’ and ‘vision’ sources; these changes also generally involved the co-operation of more stakeholder groups and were considered to be less controllable than changes arising from the ‘specification’ or ‘solution’ sources. Results from the second case study indicate that only ‘requirements dependency’ is consistently correlated with volatility and that changes coming from each change source affect different groups of requirements. We conclude that the taxonomy can provide a meaningful means of change classification, but that a single requirement attribute is insufficient for change prediction. A theoretical causal account of requirements change is drawn from the implications of the combined results of the two case studies.
Resumo:
BACKGROUND: Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome.
METHODS: In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behaviour, and compared with either CNA or transcriptomics alone.
FINDINGS: We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 103 men. These subgroups were able to consistently predict biochemical relapse (p = 0.0017 and p = 0.016 respectively) and were further validated in a third cohort with long-term follow-up (p = 0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4), and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p = 0.0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions.
INTERPRETATION: For the first time in prostate cancer this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to the generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts.
Resumo:
This research paper presents the work on feature recognition, tool path data generation and integration with STEP-NC (AP-238 format) for features having Free form / Irregular Contoured Surface(s) (FICS). Initially, the FICS features are modelled / imported in UG CAD package and a closeness index is generated. This is done by comparing the FICS features with basic B-Splines / Bezier curves / surfaces. Then blending functions are caculated by adopting convolution theorem. Based on the blending functions, contour offsett tool paths are generated and simulated for 5 axis milling environment. Finally, the tool path (CL) data is integrated with STEP-NC (AP-238) format. The tool path algorithm and STEP- NC data is tested with various industrial parts through an automated UFUNC plugin.