5 resultados para Total Cost Management
Resumo:
In many countries wind energy has become an indispensable part of the electricity generation mix. The opportunity for ground based wind turbine systems are becoming more and more constrained due to limitations on turbine hub heights, blade lengths and location restrictions linked to environmental and permitting issues including special areas of conservation and social acceptance due to the visual and noise impacts. In the last decade there have been numerous proposals to harness high altitude winds, such as tethered kites, airfoils and dirigible based rotors. These technologies are designed to operate above the neutral atmospheric boundary layer of 1,300 m, which are subject to more powerful and persistent winds thus generating much higher electricity capacities. This paper presents an in-depth review of the state-of-the-art of high altitude wind power, evaluates the technical and economic viability of deploying high altitude wind power as a resource in Northern Ireland and identifies the optimal locations through considering wind data and geographical constraints. The key findings show that the total viable area over Northern Ireland for high altitude wind harnessing devices is 5109.6 km2, with an average wind power density of 1,998 W/m2 over a 20-year span, at a fixed altitude of 3,000 m. An initial budget for a 2MW pumping kite device indicated a total cost £1,751,402 thus proving to be economically viable with other conventional wind-harnessing devices.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
Teachers frequently struggle to cope with conduct problems in the classroom. The aim of this study was to assess the effectiveness of the Incredible Years Teacher Classroom Management Training Programme for improving teacher competencies and child adjustment. The study involved a group randomised controlled trial which included 22 teachers and 217 children (102 boys and 115 girls). The average age of children included in the study was 5.3 years (standard deviation = 0.89). Teachers were randomly allocated to an intervention group (n = 11 teachers; 110 children) or a waiting-list control group (n = 11; 107 children). The sample also included 63 ‘high-risk’ children (33 intervention; 30 control), who scored above the cut-off (>12) on the Strengths and Difficulties Questionnaire for abnormal socioemotional and behavioural difficulties. Teacher and child behaviours were assessed at baseline and 6 months later using psychometric and observational measures. Programme delivery costs were also analysed. Results showed positive changes in teachers’ self-reported use of positive classroom management strategies (effect size = 0.56), as well as negative classroom management strategies (effect size = −0.43). Teacher reports also highlight improvements in the classroom behaviour of the high-risk group of children, while the estimated cost of delivering the Incredible Years Teacher Classroom Management Training Programme was modest. However, analyses of teacher and child observations were largely non-significant. A need for further research exploring the effectiveness and cost-effectiveness of the Incredible Years Teacher Classroom Management Training Programme is indicated.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.