47 resultados para Time-varying Risk
Resumo:
We propose two simple evaluation methods for time varying density forecasts of continuous higher dimensional random variables. Both methods are based on the probability integral transformation for unidimensional forecasts. The first method tests multinormal densities and relies on the rotation of the coordinate system. The advantage of the second method is not only its applicability to any continuous distribution but also the evaluation of the forecast accuracy in specific regions of its domain as defined by the user’s interest. We show that the latter property is particularly useful for evaluating a multidimensional generalization of the Value at Risk. In simulations and in an empirical study, we examine the performance of both tests.
Resumo:
A basic intuition is that arbitrage is easier when markets are most liquid. Surprisingly, we find that momentum profits are markedly larger in liquid market states. This finding is not explained by variation in liquidity risk, time-varying exposure to risk factors, or changes in macroeconomic condition, cross-sectional return dispersion, and investor sentiment. The predictive performance of aggregate market illiquidity for momentum profits uniformly exceed that of market return and market volatility states. While momentum strategies are unconditionally unprofitable in US, Japan, and Eurozone countries in the last decade, they are substantial following liquid market states.
Resumo:
We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.
Resumo:
The pressure and velocity field in a one-dimensional acoustic waveguide can be sensed in a non-intrusive manner using spatially distributed microphones. Experimental characterization with sensor arrangements of this type has many applications in measurement and control. This paper presents a method for measuring the acoustic variables in a duct under fluctuating propagation conditions with specific focus on in-system calibration and tracking of the system parameters of a three-microphone measurement configuration. The tractability of the non-linear optimization problem that results from taking a parametric approach is investigated alongside the influence of extraneous measurement noise on the parameter estimates. The validity and accuracy of the method are experimentally assessed in terms of the ability of the calibrated system to separate the propagating waves under controlled conditions. The tracking performance is tested through measurements with a time-varying mean flow, including an experiment conducted under propagation conditions similar to those in a wind instrument during playing.
Reducible Diffusions with Time-Varying Transformations with Application to Short-Term Interest Rates
Resumo:
Reducible diffusions (RDs) are nonlinear transformations of analytically solvable Basic Diffusions (BDs). Hence, by construction RDs are analytically tractable and flexible diffusion processes. Existing literature on RDs has mostly focused on time-homogeneous transformations, which to a significant extent fail to explore the full potential of RDs from both theoretical and practical points of view. In this paper, we propose flexible and economically justifiable time variations to the transformations of RDs. Concentrating on the Constant Elasticity Variance (CEV) RDs, we consider nonlinear dynamics for our time-varying transformations with both deterministic and stochastic designs. Such time variations can greatly enhance the flexibility of RDs while maintaining sufficient tractability of the resulting models. In the meantime, our modeling approach enjoys the benefits of classical inferential techniques such as the Maximum Likelihood (ML). Our application to the UK and the US short-term interest rates suggests that from an empirical point of view time-varying transformations are highly relevant and statistically significant. We expect that the proposed models can describe more truthfully the dynamic time-varying behavior of economic and financial variables and potentially improve out-of-sample forecasts significantly.
Resumo:
Value-at-risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram-Charlier expansion (GCE) augmenting the standard normal distribution with the first four moments, which are allowed to vary over time. In an extensive empirical study, we compare the GCE approach to other models of VaR forecasting and conclude that it provides accurate and robust estimates of the realized VaR. In spite of its simplicity, on our dataset GCE outperforms other estimates that are generated by both constant and time-varying higher-moments models.
Resumo:
This paper proposes a new non-parametric method for estimating model-free, time-varying liquidity betas which builds on realized covariance and volatility theory. Working under a liquidity-adjusted CAPM framework we provide evidence that liquidity risk is a factor priced in the Greek stock market, mainly arising from the covariation of individual liquidity with local market liquidity, however, the level of liquidity seems to be an irrelevant variable in asset pricing. Our findings provide support to the notion that liquidity shocks transmitted across securities can cause market-wide effects and can have important implications for portfolio diversification strategies. ©2012 Elsevier B.V. All rights reserved.
Resumo:
This paper considers a Q-ary orthogonal direct-sequence code-division multiple-access (DS-CDMA) system with high-rate space-time linear dispersion codes (LDCs) in time-varying Rayleigh fading multiple-input-multiple-output (MIMO) channels. We propose a joint multiuser detection, LDC decoding, Q-ary demodulation, and channel-decoding algorithm and apply the turbo processing principle to improve system performance in an iterative fashion. The proposed iterative scheme demonstrates faster convergence and superior performance compared with the V-BLAST-based DS-CDMA system and is shown to approach the single-user performance bound. We also show that the CDMA system is able to exploit the time diversity offered by the LDCS in rapid-fading channels.
Resumo:
BACKGROUND: CKD as defined by KDIGO/KDOQI has been shown to affect ~ 8.5% of the UK population. The prevalence of CKD in the UK is similar to that in the USA, yet incident dialysis rates are dramatically different. This retrospective cohort study investigates the association between reduced kidney function and mortality in a large UK population. METHODS: All serum creatinine results covering Northern Ireland's 1.7 million population were collected between 1 January 2001 and 31 December 2002. Estimated glomerular filtration rates (eGFR) were calculated for all serum creatinine measurements using four-variable MDRD equation (IDMS aligned). Patients were followed up for both all-cause and cardiovascular mortality data until the end of December 2006. Patients on renal replacement therapy were excluded. Subgroup analysis in the 75 345 subjects enrolled within a parallel primary care study permitted additional survival analysis with adjustment for traditional cardiovascular risk factors. RESULTS: A total of 1 967 827 serum creatinine results from 533 798 patients were collected. During the period of follow-up, 59 980 deaths occurred. In multivariate survival analysis, using eGFR as a time-varying covariate, a graded association between CKD (defined by eGFR) and all-cause mortality was identified. Compared with participants with an eGFR of > 60 mL/min/1.73 m(2), the adjusted hazard ratios (and 95% confidence intervals) for participants with an eGFR of 45-59 mL/min/1.73 m(2) was 1.02 (0.99-1.04), an eGFR of 30-44 mL/min/1.73 m(2) was 1.44 (1.40-1.47), an eGFR of 15-29 mL/min/1.73 m(2) was 2.12 (2.05-2.20) and an eGFR of
Resumo:
This study further explored the impact of sectarian violence and children's emotional insecurity about community on child maladjustment using a 4-wave longitudinal design. The study included 999 mother-child dyads in Belfast, Northern Ireland (482 boys, 517 girls). Across the 4 waves, child mean age was 12.19 (SD = 1.82), 13.24 (SD = 1.83), 13.61 (SD = 1.99), and 14.66 years (SD = 1.96), respectively. Building on previous studies of the role of emotional insecurity in child adjustment, the current study examines within-person change in emotional insecurity using latent growth curve analyses. The results showed that children's trajectories of emotional insecurity about community were related to risk for developing conduct and emotion problems. These findings controlled for earlier adjustment problems, age, and gender, and took into account the time-varying nature of experience with sectarian violence. Discussion considers the implications for children's emotional insecurity about community for relations between political violence and children's adjustment, including the significance of trajectories of emotional insecurity over time.
Resumo:
This paper proposes a method for the detection and classification of multiple events in an electrical power system in real-time, namely; islanding, high frequency events (loss of load) and low frequency events (loss of generation). This method is based on principal component analysis of frequency measurements and employs a moving window approach to combat the time-varying nature of power systems, thereby increasing overall situational awareness of the power system. Numerical case studies using both real data, collected from the UK power system, and simulated case studies, constructed using DigSilent PowerFactory, for islanding events, as well as both loss of load and generation dip events, are used to demonstrate the reliability of the proposed method.
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.
Resumo:
Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for realtime simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for realtime SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, timevarying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in realtime. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.