37 resultados para Time-series Analysis
Resumo:
Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen worldwide. A wide range of factors have been suggested to influence the spread of MRSA. The objective of this study was to evaluate the effect of antimicrobial drug use and infection control practices on nosocomial MRSA incidence in a 426-bed general teaching hospital in Northern Ireland.
Methods: The present research involved the retrospective collection of monthly data on the usage of antibiotics and on infection control practices within the hospital over a 5 year period (January 2000–December 2004). A multivariate ARIMA (time-series analysis) model was built to relate MRSA incidence with antibiotic use and infection control practices.
Results: Analysis of the 5 year data set showed that temporal variations in MRSA incidence followed temporal variations in the use of fluoroquinolones, third-generation cephalosporins, macrolides and amoxicillin/clavulanic acid (coefficients = 0.005, 0.03, 0.002 and 0.003, respectively, with various time lags). Temporal relationships were also observed between MRSA incidence and infection control practices, i.e. the number of patients actively screened for MRSA (coefficient = -0.007), the use of alcohol-impregnated wipes (coefficient = -0.0003) and the bulk orders of alcohol-based handrub (coefficients = -0.04 and -0.08), with increased infection control activity being associated with decreased MRSA incidence, and between MRSA incidence and the number of new patients admitted with MRSA (coefficient = 0.22). The model explained 78.4% of the variance in the monthly incidence of MRSA.
Conclusions: The results of this study confirm the value of infection control policies as well as suggest the usefulness of restricting the use of certain antimicrobial classes to control MRSA.
Resumo:
This article provides a time series analysis of NHS public inquiries and inquiries related to health against the background of recent policy changes which are centralizing hazardous incident investigations within agencies such as the Healthcare Commission.
Resumo:
Objective
To investigate the effect of fast food consumption on mean population body mass index (BMI) and explore the possible influence of market deregulation on fast food consumption and BMI.
Methods
The within-country association between fast food consumption and BMI in 25 high-income member countries of the Organisation for Economic Co-operation and Development between 1999 and 2008 was explored through multivariate panel regression models, after adjustment for per capita gross domestic product, urbanization, trade openness, lifestyle indicators and other covariates. The possible mediating effect of annual per capita intake of soft drinks, animal fats and total calories on the association between fast food consumption and BMI was also analysed. Two-stage least squares regression models were conducted, using economic freedom as an instrumental variable, to study the causal effect of fast food consumption on BMI.
Findings
After adjustment for covariates, each 1-unit increase in annual fast food transactions per capita was associated with an increase of 0.033 kg/m2 in age-standardized BMI (95% confidence interval, CI: 0.013–0.052). Only the intake of soft drinks – not animal fat or total calories – mediated the observed association (β: 0.030; 95% CI: 0.010–0.050). Economic freedom was an independent predictor of fast food consumption (β: 0.27; 95% CI: 0.16–0.37). When economic freedom was used as an instrumental variable, the association between fast food and BMI weakened but remained significant (β: 0.023; 95% CI: 0.001–0.045).
Conclusion
Fast food consumption is an independent predictor of mean BMI in high-income countries. Market deregulation policies may contribute to the obesity epidemic by facilitating the spread of fast food.
Resumo:
This case study deals with the role of time series analysis in sociology, and its relationship with the wider literature and methodology of comparative case study research. Time series analysis is now well-represented in top-ranked sociology journals, often in the form of ‘pooled time series’ research designs. These studies typically pool multiple countries together into a pooled time series cross-section panel, in order to provide a larger sample for more robust and comprehensive analysis. This approach is well suited to exploring trans-national phenomena, and for elaborating useful macro-level theories specific to social structures, national policies, and long-term historical processes. It is less suited however, to understanding how these global social processes work in different countries. As such, the complexities of individual countries - which often display very different or contradictory dynamics than those suggested in pooled studies – are subsumed. Meanwhile, a robust literature on comparative case-based methods exists in the social sciences, where researchers focus on differences between cases, and the complex ways in which they co-evolve or diverge over time. A good example of this is the inequality literature, where although panel studies suggest a general trend of rising inequality driven by the weakening power of labour, marketisation of welfare, and the rising power of capital, some countries have still managed to remain resilient. This case study takes a closer look at what can be learned by applying the insights of case-based comparative research to the method of time series analysis. Taking international income inequality as its point of departure, it argues that we have much to learn about the viability of different combinations of policy options by examining how they work in different countries over time. By taking representative cases from different welfare systems (liberal, social democratic, corporatist, or antipodean), we can better sharpen our theories of how policies can be more specifically engineered to offset rising inequality. This involves a fundamental realignment of the strategy of time series analysis, grounding it instead in a qualitative appreciation of the historical context of cases, as a basis for comparing effects between different countries.
Resumo:
This commentary examines two principal forms of inequality and their evolution since the 1960s: the division of national income between capital and labour, and the share of total income held by the top 1 per cent of earners. Trends are linked to current discussions of inequality drivers such as financialisation, and a brief time-series analysis of the effects of trade and financial sector growth on top incomes is presented.
Resumo:
Modeling of on-body propagation channels is of paramount importance to those wishing to evaluate radio channel performance for wearable devices in body area networks (BANs). Difficulties in modeling arise due to the highly variable channel conditions related to changes in the user's state and local environment. This study characterizes these influences by using time-series analysis to examine and model signal characteristics for on-body radio channels in user stationary and mobile scenarios in four different locations: anechoic chamber, open office area, hallway, and outdoor environment. Autocorrelation and cross-correlation functions are reported and shown to be dependent on body state and surroundings. Autoregressive (AR) transfer functions are used to perform time-series analysis and develop models for fading in various on-body links. Due to the non-Gaussian nature of the logarithmically transformed observed signal envelope in the majority of mobile user states, a simple method for reproducing the failing based on lognormal and Nakagami statistics is proposed. The validity of the AR models is evaluated using hypothesis testing, which is based on the Ljung-Box statistic, and the estimated distributional parameters of the simulator output compared with those from experimental results.
Resumo:
The stochastic nature of oil price fluctuations is investigated over a twelve-year period, borrowing feedback from an existing database (USA Energy Information Administration database, available online). We evaluate the scaling exponents of the fluctuations by employing different statistical analysis methods, namely rescaled range analysis (R/S), scale windowed variance analysis (SWV) and the generalized Hurst exponent (GH) method. Relying on the scaling exponents obtained, we apply a rescaling procedure to investigate the complex characteristics of the probability density functions (PDFs) dominating oil price fluctuations. It is found that PDFs exhibit scale invariance, and in fact collapse onto a single curve when increments are measured over microscales (typically less than 30 days). The time evolution of the distributions is well fitted by a Levy-type stable distribution. The relevance of a Levy distribution is made plausible by a simple model of nonlinear transfer. Our results also exhibit a degree of multifractality as the PDFs change and converge toward to a Gaussian distribution at the macroscales.
Resumo:
The validity of load estimates from intermittent, instantaneous grab sampling is dependent on adequate spatial coverage by monitoring networks and a sampling frequency that re?ects the variability in the system under study. Catchments with a ?ashy hydrology due to surface runoff pose a particular challenge as intense short duration rainfall events may account for a signi?cant portion of the total diffuse transfer of pollution from soil to water in any hydrological year. This can also be exacerbated by the presence of strong background pollution signals from point sources during low flows. In this paper, a range of sampling methodologies and load estimation techniques are applied to phosphorus data from such a surface water dominated river system, instrumented at three sub-catchments (ranging from 3 to 5 km2 in area) with near-continuous monitoring stations. Systematic and Monte Carlo approaches were applied to simulate grab sampling using multiple strategies and to calculate an estimated load, Le based on established load estimation methods. Comparison with the actual load, Lt, revealed signi?cant average underestimation, of up to 60%, and high variability for all feasible sampling approaches. Further analysis of the time series provides an insight into these observations; revealing peak frequencies and power-law scaling in the distributions of P concentration, discharge and load associated with surface runoff and background transfers. Results indicate that only near-continuous monitoring that re?ects the rapid temporal changes in these river systems is adequate for comparative monitoring and evaluation purposes. While the implications of this analysis may be more tenable to small scale ?ashy systems, this represents an appropriate scale in terms of evaluating catchment mitigation strategies such as agri-environmental policies for managing diffuse P transfers in complex landscapes.
Resumo:
Background: Evidence suggests that in prokaryotes sequence-dependent transcriptional pauses a?ect the dynamics of transcription and translation, as well as of small genetic circuits. So far, a few pause-prone sequences have been identi?ed from in vitro measurements of transcription elongation kinetics.
Results: Using a stochastic model of gene expression at the nucleotide and codon levels with realistic parameter values, we investigate three di?erent but related questions and present statistical methods for their analysis. First, we show that information from in vivo RNA and protein temporal numbers is su?cient to discriminate between models with and without a pause site in their coding sequence. Second, we demonstrate that it is possible to separate a large variety of models from each other with pauses of various durations and locations in the template by means of a hierarchical clustering and a random forest classi?er. Third, we introduce an approximate likelihood function that allows to estimate the location of a pause site.
Conclusions: This method can aid in detecting unknown pause-prone sequences from temporal measurements of RNA and protein numbers at a genome-wide scale and thus elucidate possible roles that these sequences play in the dynamics of genetic networks and phenotype.
Resumo:
The problem of model selection of a univariate long memory time series is investigated once a semi parametric estimator for the long memory parameter has been used. Standard information criteria are not consistent in this case. A Modified Information Criterion (MIC) that overcomes these difficulties is introduced and proofs that show its asymptotic validity are provided. The results are general and cover a wide range of short memory processes. Simulation evidence compares the new and existing methodologies and empirical applications in monthly inflation and daily realized volatility are presented.
Resumo:
We develop a continuous-time asset price model to capture the timeseries momentum documented recently. The underlying stochastic delay differentialsystem facilitates the analysis of effects of different time horizons used bymomentum trading. By studying an optimal asset allocation problem, we find thatthe performance of time series momentum strategy can be significantly improvedby combining with market fundamentals and timing opportunity with respect tomarket trend and volatility. Furthermore, the results also hold for different timehorizons, the out-of-sample tests and with short-sale constraints. The outperformanceof the optimal strategy is immune to market states, investor sentiment andmarket volatility.
Resumo:
This paper presents a framework for a telecommunications interface which allows data from sensors embedded in Smart Grid applications to reliably archive data in an appropriate time-series database. The challenge in doing so is two-fold, firstly the various formats in which sensor data is represented, secondly the problems of telecoms reliability. A prototype of the authors' framework is detailed which showcases the main features of the framework in a case study featuring Phasor Measurement Units (PMU) as the application. Useful analysis of PMU data is achieved whenever data from multiple locations can be compared on a common time axis. The prototype developed highlights its reliability, extensibility and adoptability; features which are largely deferred from industry standards for data representation to proprietary database solutions. The open source framework presented provides link reliability for any type of Smart Grid sensor and is interoperable with existing proprietary database systems, and open database systems. The features of the authors' framework allow for researchers and developers to focus on the core of their real-time or historical analysis applications, rather than having to spend time interfacing with complex protocols.
Resumo:
Historical GIS has the potential to re-invigorate our use of statistics from historical censuses and related sources. In particular, areal interpolation can be used to create long-run time-series of spatially detailed data that will enable us to enhance significantly our understanding of geographical change over periods of a century or more. The difficulty with areal interpolation, however, is that the data that it generates are estimates which will inevitably contain some error. This paper describes a technique that allows the automated identification of possible errors at the level of the individual data values.