14 resultados para Timber construction
Resumo:
This paper presents a study of the residual strength of Pinus sylvestris, which has been subject to attack by the furniture beetle (Anobium punctatum). It is relatively easy to stop the infestation, but difficult to assess the structural soundness of the remaining timber. Removal and replacement of affected structural elements is usually difficult and expensive, particularly in buildings of historic interest. Current on-site assessment procedures are limited. The main object of the study was to develop an on-site test of timber quality: a test which can be carried out on the surface and also at varying depths into the timber. It is based on a probe pull-out technique using a portable load-measuring device. Pull-out force values have been correlated with both strength and energy absorbed as measured by compression testing on laboratory samples of both sound and infested timber. These two relationships are significant and could be used to assess whether remedial work is needed. In addition, work on the use of artificial borings to simulate the natural worming of timber is presented and the findings discussed.
Resumo:
This project involves the construction of a dwelling in the outskirts of Dublin City. Situated in a disused quarry, the house act as an inhabited bridge, spanning between natural and man made outcrops, service structures and a shared entrance staircase. The houses language derives from the structure necessary to achieve these spans.
The section internally is modeled to present a variety of scales of spaces. More intimate living spaces and bedrooms occur in a lower, north-facing wing. Taller living spaces address the south.
Incorporating rainwater harvesting, wood-gasifying boilers, on site wind powered electrical generation, solar thermal panels and very high levels of insulation the houses are close to energy neutral. The fact that the house is constructed in massive timber construction means that 250 tonnes of carbon are sequestered in its construction. The design includes a 25yar replanting strategy to replace the existing coniferous-forested surrounds with native species in a coppiced planting strategy to allow ongoing fuel for the house, and cash crops to be sold on.
Located in an area of outstanding natural beauty the planning and design of the house involved research into patterns of rural development, the relationship between man made interventions and the natural landscape and the technology of the vernacular. This latter research forms part of the themes being explored under the Kevin Kieran Arts Council / OPW Bursary
Aims / Objectives Questions
1 To design and construct a low energy place to dwell.
2 To investigate the relationship between man-made interventions and new construction in an area of outstanding natural beauty.
3 To derive a language of construction that is contemporary in nature but refers to precedents embedded in the vernacular.
4 To develop a low-carbon form of construction that allows the construction of the house to act to sequester carbon
5 To make a contemporary addition in sympathy with the qualities of the existing site
Resumo:
In the early 19th century the requirement for clear span industrial buildings brought about the development of a variety of timber truss types. The Belfast truss was introduced circa 1860 to meet the demand for efficient wide span industrial buildings. It has essentially a bow-string configuration with a curved top chord, straight horizontal bottom chord and close-spaced lattice web. Several thousand still exist in Ireland, many in buildings of historic significance. This paper sets out to demonstrate the efficiency of the Belfast truss and to show that, by modern structural design criteria, the concept, member sizes and joint details were well chosen. Trusses in historic buildings can be replicated almost exactly as originally fabricated. Results of a theoretical study are compared with the experimental behaviour of two full-scale trusses: one a replacement truss, tested in the laboratory; the other an 80-year-old truss tested on site. In addition, experimental results from a manufacturers archive material of full-scale truss tests carried out about 100 years ago are compared with theoretical models. As well as considering their significance in building conservation the paper proposes that Belfast trusses are an attractive sustainable alternative to other roof structures. The analysis, design, fabrication and testing of trusses have resulted in a better understanding of their behaviour which is not only of historic interest and fundamental to the repair/restoration of existing trusses, but also relevant to the design of modern timber trusses and the promotion of a sustainable form of roof construction.
Resumo:
Within the sustainability context, this paper is extremely timely and relevant. The research focuses on broadening the use of timber structurally. The insight gained forms the basis for sustainable, fire resistant, economic and aesthetically pleasing moment resistant connections in timber.
Resumo:
It has often been assumed that the islands of Orkney were essentially treeless throughout much of the Holocene, with any ‘scrub’ woodland having been destroyed by Neolithic farming communities by around 3500 cal. BC. This apparently open, hyper-oceanic environment would presumably have provided quite marginal conditions for human settlement, yet Neolithic communities flourished and the islands contain some of the most spectacular remains of this period in north-west Europe. The study of new Orcadian pollen sequences, in conjunction with the synthesis of existing data, indicates that the timing of woodland decline was not synchronous across the archipelago, beginning in the Mesolithic, and that in some areas woodland persisted into the Bronze Age. There is also evidence to suggest that woodland communities in Orkney were more diverse, and therefore that a wider range of resources was available to Neolithic people, than has previously been assumed. Recent archaeological investigations have revealed evidence for timber buildings at early Neolithic settlement sites, suggesting that the predominance of stone architecture in Neolithic Orkney may not have been due to a lack of timber as has been supposed. Rather than simply reflecting adaptation to resource constraints, the reasons behind the shift from timber to stone construction are more complex and encompass social, cultural and environmental factors.
Resumo:
This paper describes a series of four-point bending tests that were conducted, under service loads and to failure, on unreinforced, reinforced and post-tensioned glulam timber beams, where the reinforcing tendon used was 12 mm diameter toughened steel bar. The research was designed to evaluate the benefits offered by including an active reinforcement in contrast to the passive reinforcement typically used within timber strengthening works, in addition to establishing the effect that bonding the reinforcing tendon has on the materials performance.
The laboratory investigations established that the flexural strength and stiffness increased for both the reinforced and post-tensioned timbers compared to the unreinforced beams. The flexural strength of the reinforced timber increased by 29.4%, while the stiffness increased by 28.1%. Timber that was post-tensioned with an unbonded steel tendon showed a flexural strength increase of 17.6% and an increase in stiffness of 8.1%. Post-tensioned beams with a bonded steel tendon showed increases in flexural strength and stiffness of 40.1% and 30% respectively.
Resumo:
Improvements in the structural performance of glulam timber beams by the inclusion of reinforcing materials can increase both the service performance and ultimate capacity. This paper describes a series of four-point bending tests conducted, under service loads and to failure, on unreinforced, reinforced and post-tensioned glulam timber beams, where the reinforcing tendon used is 12 mm dia. basalt fibre-reinforced polymer. The research is designed to evaluate the benefits offered by including an active reinforcement in contrast to the passive reinforcement typically used within timber strengthening works, in addition to establishing the effect that bonding the reinforcing tendon has on the material's performance. Further experimental tests have also been developed to investigate the long-term implications of this research, with emphasis placed upon creep and loss of post-tensioning; however, this is ongoing and is not presented in this paper. The laboratory investigations establish that the flexural strength and stiffness increase for both the unbonded and bonded post-tensioned timbers compared to the unreinforced and reinforced beams. Timber that is post-tensioned with an unbonded basalt fibre-reinforced polymer tendon shows a flexural strength increase of 2ṡ8% and an increase in stiffness of 8ṡ7%. Post-tensioned beams with a bonded basalt fibre-reinforced polymer tendon show increases in flexural strength and stiffness of 15ṡ4% and 11ṡ5% respectively.
Resumo:
In order to increase the utilisation of Irish timber in construction and novel engineered wood products, the mechanical and physical properties of the material must be established. For timber products used for structural applications, the fundamental properties are the modulus of elasticity, bending strength, density and dimensional stability, as these define the structural grade of the material. In order to develop engineering design models for applications such as reinforced timber, knowledge of the nonlinear stress-strain behaviour in compression is also required.
The paper presents the programme and results of an ongoing research project ‘Innovation in Irish Timber Usage’ which focuses on the characterisation of Sitka spruce as it is the most widely grown species in Ireland. In the past, a number of studies have been conducted to determine the properties of Irish-grown Sitka spruce. Nevertheless, due to the changes that have taken place in silvicultural practices since the publication of these studies, there is a need to determine how these properties have changed. This paper presents the data gathered from historical studies together with the results of an extensive test programme undertaken to characterise the properties of the present resource.
Moreover, the study preliminary examines the potential use of Irish grown Sitka spruce in novel timber products. Construction applications, such as fibre-reinforced polymer reinforced timber elements and connections, and cross-laminated timber are investigated.
Resumo:
The potential use of Irish-grown Sitka spruce for cross-laminated timber (CLT) manufacture is investigated as this would present new opportunities and novel products for Irish timber in the home and export markets. CLT is a prefabricated multilayer engineered wood product made of at least three orthogonally bonded layers of timber. In order to increase rigidity and stability, successive layers of boards are placed cross-wise to form a solid timber panel. Load-bearing CLT wall and floor panels are easily assembled on site to form multi-storey buildings. This improves construction and project delivery time, reduces costs,
and maximises efficiency on all levels.
The paper addresses the quality of the interface bond between the laminations making up the panels, which is of fundamental importance to the load bearing capacity. Therefore, shear tests were carried out on nine test bars of three glue lines each. Moreover, delamination tests were performed on samples subjected to accelerated aging, in order to assess the durability of bonds subjected to severe environmental conditions. In addition, this paper gives an indication on thickness tolerances of planed Irish Sitka spruce lamellas, which is likely to be a critical factor for bonding quality and adhesive selection. The test results of bond quality presented in this study were within requirements of prEN 16351:2013.
Resumo:
The research and development of connecting and strengthening timber structural elements with glued-inrods (GiR) has been ongoing since the 1980s. Despite many successful applications in practice, agreement regarding design criteria has not been reached. This state-of-the-art review summarises results from both research and practical applications regarding connections and reinforcement with GiR. The review considers manufacturing methods, mechanisms and parameters governing the performance and strength of GiR, theoretical approaches to estimate their load-bearing capacity and existing design recommendations.
Resumo:
Timber engineering has advanced over recent decades to offer an alternative to traditional materials and methods. The bonding of fibre reinforced plastics (FRP) with adhesives to timber structures for repair and strengthening has many advantages. However, the lack of established design rules has strongly restrained the use of FRP strengthening in many situations, where these could be a preferable option to most traditional techniques. A significant body of research has been carried out in recent years on the performance of FRP reinforced timber and engineered wood products. This paper gives a State of the Art summary of material formulations, application areas, design approaches and quality control issues for practical engineers to introduce on-site bonding of FRP to timber as a new way in design for structural repair and rehabilitation.
Resumo:
Many timber structures may require strengthening due to either decay and aging or an increase of load. This paper presents an experimental study in which eleven timber beams were tested, including three unstrengthened reference beams and eight beams strengthened with NSM CFRP bars. The test parameters include the position of NSM (tensile face or the bottom of the sides), the number of CFRP bars (1 or 2), and additional anchorage of NSM CFRP bars (steel wire U anchors or CFRP U strips). The test results show that the ultimate flexural strength of the timber beams were increased by 14%∼85% with an average of 47% due to NSM CFRP bar strengthening. Their deflection corresponding to the peak load was increased by 33% in average.
Resumo:
An investigation was carried out on CLT panels made from Sitka spruce in order to establish the effect of the thickness of CLT panels on the bending stiffness and strength and the rolling shear. Bending and shear tests on 3-layer and 5-layer panels were performed with loading in the out-of-plane and in-plane directions. ‘Global’ stiffness measurements were found to correlate well with theoretical values. Based on the results, there was a general tendency that both the bending strength and rolling shear decreased with panel thickness. Mean values for rolling shear ranged from 1.0 N/mm2 to 2.0 N/mm2 .