5 resultados para TiO2-SnO2 composite
Resumo:
Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.
Resumo:
Nanocrystalline SnO2, ncSnO(2), is used as a photosensitiser in a colourimetric O-2 indicator that comprises a sacrificial electron donor, glycerol, a redox dye, methylene blue (MB), and an encapsulating polymer, hydroxyethyl cellulose (HEC). Upon exposure to a burst of UVB light the indicator is activated (photo-bleached) as the MB is photoreduced by the ncSnO(2) particles. In the absence of oxygen, the film stays bleached, but recovers its original colour upon exposure to oxygen. Unlike its TiO2-based predecessor, the HEC/glycerol/MB/ncSnO(2) O-2 indicator is not activated by UVA light from white fluorescent lamps, but is by UVB light. This feature provides much greater control in the activation of the indicator. Other work shows the rate of activation depends upon I-0.75, where I is the UVB irradiance, indicating a partial dependence upon the electron-hole recombination process. The half-life of the recovery of the original colour of a UV-activated film, t(50), is directly proportional to the ambient level of oxygen. The advantages of using this indicator in modified atmosphere packaging as a possible quality assurance indicator are discussed briefly. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, density functional theory calculations have been performed to study the geometric, electronic, and energetic properties of two-phase TiO2 composites built by joining two single-phase TiO2 slabs, aiming at verifying possible improvement of the photo-activities of the composites through phase separation of excitons. We find that such desired electronic properties can be determined by several factors. When both the HOMO and LUMO levels of one of the two single-phase TiO2 slabs are higher than the corresponding ones of the other, the composite may have native electronic structures with phase-separated HOMO-LUMO states, especially when the two slabs exhibit highly matched surface lattices. For those pairs of TiO2 slabs with the HOMO and LUMO levels of one phase being within the range of those of the other, though the energetically favored composite give HOMO-LUMO states within one phase, one may still be able to separate them and move the HOMO state to the interface region by destabilizing the interactions between the two slabs.
Resumo:
In this work we demonstrate the synthesis of a TiO2/PEDOT:PSS nanocomposite material in aqueous solution through atmospheric pressure direct current (DC) plasma processing at room temperature. The dispersion of the TiO2 nanoparticles is enhanced after microplasma processing, and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. We have observed increased TiO2/PEDOT:PSS nanocomposite electrical conductivity due to microplasma processing. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are thought to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer bonding, which is expected to have a significant benefit in materials processing with inorganic nanoparticles for wide range of applications.
Resumo:
Composite NiFe2O4–TiO2 magnetic catalysts were prepared by mechanochemical synthesis from a mixture of titania supported nickel ferrite nanoparticles and P25 titania (Evonic). The former provides fast and efficient heating under radiofrequency field, while the latter serves as an active catalyst or catalyst support. The highest heating rate was observed over a catalyst prepared for a milling time of 30 min. The catalytic activity was measured over the sulfated composite catalysts in the condensation of aniline and 3-phenylbutyric acid in a stirred tank reactor and in a continuous RF heated flow reactor in the 140–170 °C range. The product yield of 47% was obtained over the sulfated P25 titania catalyst in the flow reactor.