8 resultados para Thermocouples.
Resumo:
The problem of measuring high frequency variations in temperature is described, and the need for some form of reconstruction introduced. One method of reconstructing temperature measurements is to use the signals from two thermocouples of differing diameter. Two existing methods for processing such measurements and reconstructing the higher frequency components are described. These are compared to a novel reconstruction algorithm based on a nonlinear extended Kalman filter. The performance of this filter is found to compare favorably, in a number of ways, with the existing techniques, and it is suggested that such a technique would be viable for the online reconstruction of temperatures in real time.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in the harsh environment found in combustion systems and automotive engine exhausts, large wire diameters are required and consequently the measurement bandwidth is reduced. This paper describes two new algorithmic compensation techniques based on blind deconvolution to address this loss of high-frequency signal components using the measurements from two thermocouples. In particular, a continuous-time approach is proposed, combined with a cross-relation blind deconvolution for parameter estimation. A feature of this approach is that no a priori assumption is made about the time constant ratio of the two thermocouples. The advantages, including small estimation variance and limitations of the method, are highlighted using results from simulation and test rig studies.
Resumo:
The harsh environment presented by engines, particularly in the exhaust systems, often necessitates the use of robust and therefore low bandwidth temperature sensors. Consequently, high frequencies are attenuated in the output. One technique for addressing this problem involves measuring the gas temperature using two sensors with different time-constants and mathematically reconstructing the true gas temperature from the resulting signals. Such a technique has been applied in gas turbine, rocket motor and combustion research. A new reconstruction technique based on difference equations has been developed and its effectiveness proven theoretically. The algorithms have been successfully tested and proven on experimental data from a rig that produces cyclic temperature variations. These tests highlighted that the separation of the thermocouple junctions must be very small to ensure that both sensors are subjected to the same gas temperatures. Exhaust gas temperatures were recorded by an array of thermocouples during transient operation of a high performance two-stroke engine. The results show that the increase in bandwidth arising from the dual sensor technique allowed accurate measurement of exhaust gas temperature with relatively robust thermocouples. Finally, an array of very fine thermocouples (12.5 - 50 microns) was used to measure the in-cycle temperature variation in the exhaust.
Resumo:
When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.
Resumo:
A two-thermocouple sensor characterization method for use in variable flow applications is proposed. Previous offline methods for constant velocity flow are extended using sliding data windows and polynomials to accommodate variable velocity. Analysis of Monte-Carlo simulation studies confirms that the unbiased and consistent parameter estimator outperforms alternatives in the literature and has the added advantage of not requiring a priori knowledge of the time constant ratio of thermocouples. Experimental results from a test rig are also presented. © 2008 The Institute of Measurement and Control.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation (DE) approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material.