2 resultados para The Dutch Disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: FcγR polymorphisms have been reported to enhance the immune-mediated effects of cetuximab in metastatic colorectal cancer. There are no data on the relationship between these polymorphisms and cetuximab in the early-stage setting. We performed a pharmacogenomic analysis of EXPERT-C, a randomized phase II trial of neoadjuvant CAPOX followed by chemoradiotherapy, surgery, and adjuvant CAPOX ± cetuximab in high-risk, locally advanced rectal cancer.

Experimental Design: FcγRIIa-H131R and FcγRIIIa-V158F polymorphisms were analyzed on DNA from peripheral blood samples. Kaplan–Meier method and Cox regression analysis were used to calculate survival estimates and compare treatment arms.

Results: Genotyping was successfully performed in 105 of 164 (64%) patients (CAPOX = 54, CAPOX-C = 51). No deviation from the Hardy–Weinberg equilibrium or association of these polymorphisms with tumor RAS status was observed. FcγRIIa-131R (HR, 0.38; P = 0.058) and FcγRIIIa-158F alleles (HR, 0.21; P = 0.007) predicted improved progression-free survival (PFS) in patients treated with cetuximab. In the CAPOX-C arm, carriers of both 131R and 158F alleles had a statistically significant improvement in PFS (5 years: 78.4%; HR, 0.22; P = 0.002) and overall survival (OS; 5 years: 86.4%; HR, 0.24; P = 0.018) when compared with patients homozygous for 131H and/or 158V (5-year PFS: 35.7%; 5-year OS: 57.1%). An interaction between cetuximab benefit and 131R and 158F alleles was found for PFS (P = 0.017) and remained significant after adjusting for prognostic variables (P = 0.003).

Conclusion: This is the first study investigating FcγRIIa and FcγRIIIa polymorphisms in patients with early-stage colorectal cancer treated with cetuximab. We showed an increased clinical benefit from cetuximab in the presence of 131R and 158F alleles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanisms involved in the progression from monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM) to malignant multiple myeloma (MM) and plasma cell leukemia (PCL) are poorly understood but believed to involve the sequential acquisition of genetic hits. We performed exome and whole-genome sequencing on a series of MGUS (n=4), high-risk (HR)SMM (n=4), MM (n=26) and PCL (n=2) samples, including four cases who transformed from HR-SMM to MM, to determine the genetic factors that drive progression of disease. The pattern and number of non-synonymous mutations show that the MGUS disease stage is less genetically complex than MM, and HR-SMM is similar to presenting MM. Intraclonal heterogeneity is present at all stages and using cases of HR-SMM, which transformed to MM, we show that intraclonal heterogeneity is a typical feature of the disease. At the HR-SMM stage of disease, the majority of the genetic changes necessary to give rise to MM are already present. These data suggest that clonal progression is the key feature of transformation of HR-SMM to MM and as such the invasive clinically predominant clone typical of MM is already present at the SMM stage and would be amenable to therapeutic intervention at that stage.