23 resultados para Teutoburger Wald, Battle of, Germany, 9 A.D.
Resumo:
The controlled-release characteristics of matrix silicone intravaginal rings loaded with between 100 and 971 mg of nonoxynol-9 have been investigated with a view to developing a ring that may offer a new female-controlled method for the prevention of transmission of sexually transmitted diseases, particularly HIV. Intravaginal rings containing 253, 487 and 971 mg of nonoxynol-9 provided a daily release of 2 mg or more over the 8-day release period, the minimal amount of nonoxynol-9 considered to provide an effective vaginal concentration for the prevention of HIV. Furthermore, the maximum daily release of N9 was about 6 mg, an amount significantly smaller than that observed for other nonoxynol-9 products whose large daily doses may in fact increase the occurrence of HIV by causing epithelial damage to the vaginal tissue. The release mechanism of the liquid nonoxynol-9 from the intravaginal rings has also been investigated and compared to models describing the release of solid drugs from the rings. It has been demonstrated through release studies and surface microscopy that a drug depletion zone is not established in such liquid-loaded intravaginal ring systems, with implications for the release kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background: This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data.
Methods: We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species.
Results: Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential.
Conclusion: Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies.
Resumo:
The unique absorption properties of the 9-hydroxyphenalen-1-one (HPHN) ligand have been exploited to obtain visible-light-sensitizable rare-earth complexes in 1: 3 and 1: 4 metal-to-ligand ratios. In both stoichiometries (1:3,tris,Ln(PHN)3;1:4, tetrakis, A[ Ln( PHN)(4)], with Ln being a trivalent rare-earth ion and A being a monovalent cation), the complexes of Nd(III),Er( III), and Yb(III) show typical near-infrared luminescence upon excitation with visible light with wavelengths up to 475 nm. The X-ray crystal structures of the tris complexes show solvent coordination to the central rare-earth ion, whereas in the tetrakis complexes, the four PHN-ligands form a protective shield around the central ion, preventing small solvent molecules from coordinating to the rare-earth ion, at least in the solid state.
Resumo:
We present a simple quantum mechanical model to describe Coulomb explosion of H-2(+) and D-2(+) by short, intense infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid when the process of dissociation prior to ionization is negligible. The results are compared with recent experimental data for the proton kinetic energy spectrum [Th. Ergler , Phys. Rev. Lett. 95, 093001 (2005); D. S. Murphy , J. Phys. B 40, S359 (2007)]. Using a Franck-Condon distribution over initial vibrational states, the theory reproduces the overall shape of the spectrum with only a small overestimation of slow protons. The agreement between theory and experiment can be made perfect by using a non-Frank-Condon initial distribution characteristic for H-2(+) (D-2(+)) targets produced by strong-field ionization of H-2 (D-2). For comparison, we also present results obtained by two different tunneling models for this process.
Resumo:
One of the enduring illusions about Northern Ireland is that its society can be conceptualized through a binary distinction between protestant and catholic. unionist and nationalist. It is increasingly apparent that these broad domains are themselves fractured and diverse and that otherness is often conceived from within rather than without. Northern Ireland can also be viewed as a laboratory for identity formation as unionists and loyalists strive to reconcile themselves with the fundamental political changes that have followed in the wake of the Peace Process. This paper considers one aspect of the contestation of belonging that increasingly characterizes unionism. It examines the competition for the ownership of the mythology of the Battle of the Somme ( 1916), long a key event in the unionist narrative. In particular, the paper addresses the ways in which paramilitary organizations are using the Somme to legitimate their own activities but also to distance the loyalist working classes from the former hegemonic Britishness of official unionism and the sectarianism of the Orange Order. The analysis concludes that loyalist identity is being conceptualized thorough a narrative of betrayal from within and at an intensely localized scale.
Resumo:
An efficient chemical synthesis of 5a-carba-alpha-D-mannose and its enzymatic elaboration to 5a-carba-alpha-D-mannose-6-phosphate, using yeast hexokinase, is described.