5 resultados para Terahertz time-domain spectroscopy
Resumo:
Two direct sampling correlator-type receivers for differential chaos shift keying (DCSK) communication systems under frequency non-selective fading channels are proposed. These receivers operate based on the same hardware platform with different architectures. In the first scheme, namely sum-delay-sum (SDS) receiver, the sum of all samples in a chip period is correlated with its delayed version. The correlation value obtained in each bit period is then compared with a fixed threshold to decide the binary value of recovered bit at the output. On the other hand, the second scheme, namely delay-sum-sum (DSS) receiver, calculates the correlation value of all samples with its delayed version in a chip period. The sum of correlation values in each bit period is then compared with the threshold to recover the data. The conventional DCSK transmitter, frequency non-selective Rayleigh fading channel, and two proposed receivers are mathematically modelled in discrete-time domain. The authors evaluated the bit error rate performance of the receivers by means of both theoretical analysis and numerical simulation. The performance comparison shows that the two proposed receivers can perform well under the studied channel, where the performances get better when the number of paths increases and the DSS receiver outperforms the SDS one.
Resumo:
The measurement of fast changing temperature fluctuations is a challenging problem due to the inherent limited bandwidth of temperature sensors. This results in a measured signal that is a lagged and attenuated version of the input. Compensation can be performed provided an accurate, parameterised sensor model is available. However, to account for the in influence of the measurement environment and changing conditions such as gas velocity, the model must be estimated in-situ. The cross-relation method of blind deconvolution is one approach for in-situ characterisation of sensors. However, a drawback with the method is that it becomes positively biased and unstable at high noise levels. In this paper, the cross-relation method is cast in the discrete-time domain and a bias compensation approach is developed. It is shown that the proposed compensation scheme is robust and yields unbiased estimates with lower estimation variance than the uncompensated version. All results are verified using Monte-Carlo simulations.
Resumo:
A potentially powerful drive-by bridge inspection approach was proposed to inspect bridge conditions utilizing the vibrations of a test vehicle while it passes over the target bridge. This approach suffers from the effect of roadway surface roughness and two solutions were proposed in previous studies: one is to subtract the responses of two vehicles (time-domain method) before spectral analysis and the other one is to subtract the spectrum of one vehicle from that of the other (frequency-domain method). Although the two methods were verified theoretically and numerically, their practical effectiveness is still an open question.Furthermore, whether the outcome spectra processed by those methods could be used to detect potential bridge damage is of our interests. In this study, a laboratory experiment was carried out with a test tractor-trailer system and a scaled bridge. It was observed that, first, for practical applications, it would be preferable to apply the frequency-domain method, avoiding the need to meet a strict requirement in synchronizing the responses of the two trailers in time domain; second, the statistical pattern of the processed spectra in a specific frequency band could be an effective anomaly indicator incorporated in drive-by inspection methods.
Resumo:
The measurement of fast changing temperature fluctuations is a challenging problem due to the inherent limited bandwidth of temperature sensors. This results in a measured signal that is a lagged and attenuated version of the input. Compensation can be performed provided an accurate, parameterised sensor model is available. However, to account for the influence of the measurement environment and changing conditions such as gas velocity, the model must be estimated in-situ. The cross-relation method of blind deconvolution is one approach for in-situ characterisation of sensors. However, a drawback with the method is that it becomes positively biased and unstable at high noise levels. In this paper, the cross-relation method is cast in the discrete-time domain and a bias compensation approach is developed. It is shown that the proposed compensation scheme is robust and yields unbiased estimates with lower estimation variance than the uncompensated version. All results are verified using Monte-Carlo simulations.