19 resultados para Tensor of the Affine Deformation
Resumo:
This paper presents a practical algorithm for the simulation of interactive deformation in a 3D polygonal mesh model. The algorithm combines the conventional simulation of deformation using a spring-mass-damping model, solved by explicit numerical integration, with a set of heuristics to describe certain features of the transient behaviour, to increase the speed and stability of solution. In particular, this algorithm was designed to be used in the simulation of synthetic environments where it is necessary to model realistically, in real time, the effect on non-rigid surfaces being touched, pushed, pulled or squashed. Such objects can be solid or hollow, and have plastic, elastic or fabric-like properties. The algorithm is presented in an integrated form including collision detection and adaptive refinement so that it may be used in a self-contained way as part of a simulation loop to include human interface devices that capture data and render a realistic stereoscopic image in real time. The algorithm is designed to be used with polygonal mesh models representing complex topology, such as the human anatomy in a virtual-surgery training simulator. The paper evaluates the model behaviour qualitatively and then concludes with some examples of the use of the algorithm.
Resumo:
Laser welding is an important process for fabricating complex components involving NiTi shape memory
alloy. As welding is a thermal process, the amount of heat input and the rate of cooling have significant
impact on the microstructure and hence the resultant characteristics of NiTi. In this study, the effect of
laser welding and post-weld-annealing from 573 K to 1173 K on the thermal phase transformation behaviors,
tensile deformation and micro-hardness characteristics of the laser-welded NiTi thin foils were investigated.
It was found that the as-welded sample exhibited inferior super-elasticity compared to the base
material, and the super-elasticity could be partially restored by annealing at 573 K. On the other hand,
annealing of the weldment above the recrystallization temperature would lower the super-elasticity.
Resumo:
We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.
Resumo:
Digital manufacturing techniques can simulate complex assembly sequences using computer-aided design-based, as-designed' part forms, and their utility has been proven across several manufacturing sectors including the ship building, automotive and aerospace industries. However, the reality of working with actual parts and composite components, in particular, is that geometric variability arising from part forming or processing conditions can cause problems during assembly as the as-manufactured' form differs from the geometry used for any simulated build validation. In this work, a simulation strategy is presented for the study of the process-induced deformation behaviour of a 90 degrees, V-shaped angle. Test samples were thermoformed using pre-consolidated carbon fibre-reinforced polyphenylene sulphide, and the processing conditions were re-created in a virtual environment using the finite element method to determine finished component angles. A procedure was then developed for transferring predicted part forms from the finite element outputs to a digital manufacturing platform for the purpose of virtual assembly validation using more realistic part geometry. Ultimately, the outcomes from this work can be used to inform process condition choices, material configuration and tool design, so that the dimensional gap between as-designed' and as-manufactured' part forms can be reduced in the virtual environment.
Resumo:
A novel digital image correlation (DIC) technique has been developed to track changes in textile yarn orientations during shear characterisation experiments, requiring only low-cost digital imaging equipment. Fabric shear angles and effective yarn strains are calculated and visualised using this new DIC technique for bias extension testing of an aerospace grade, carbon-fibre reinforcement material with a plain weave architecture. The DIC results are validated by direct measurement, and the use of a wide bias extension sample is evaluated against a more commonly used narrow sample. Wide samples exhibit a shear angle range 25% greater than narrow samples and peak loads which are 10 times higher. This is primarily due to excessive yarn slippage in the narrow samples; hence, the wide sample configuration is recommended for characterisation of shear properties which are required for accurate modelling of textile draping.
Resumo:
The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.
Resumo:
In situ ellipsometry and Kerr polarimetry have been used to follow the continuous evolution of the optical and magneto- optical properties of multiple layers of Co and Pd during their growth. Films were sputter deposited onto a Pd buffer layer on glass substrates up to a maximum of N = 10 bi-layer periods according to the scheme glass/Pd(10)Ar x (0.3Co/3Pd) (nm). Magnetic hysteresis measurements taken during the deposition consistently showed strong perpendicular anisotropy at all stages of film growth following the deposition of a single monolayer of Co. Magneto-optic signals associated with the normal-incidence polar Kerr effect indicated strong polarization of Pd atoms at both Co-Pd and Pd-Co interfaces and that the magnitude of the complex magneto-optic Voigt parameter and the magnetic moment of the Pd decrease exponentially with distance from the interface with a decay constant of 1.1 nm(- 1). Theoretical simulations have provided an understanding of the observations and allow the determination of the ultrathin- film values of the elements of the skew-symmetric permittivity tensor that describe the optical and magneto-optical properties for both CO and Pd. Detailed structure in the observed Kerr ellipticity shows distinct Pd-thickness-dependent oscillations with a spatial period of about 1.6 nm that are believed to be associated with quantum well levels in the growing Pd layer.
Experimental observations of the stress regime in unsaturated compacted clay when laterally confined
Resumo:
Construction processes often involve reformation of the landscape, which will inevitably encompass compaction of artificially placed soils. A common application of fill materials is their use as backfill in many engineering applications, for example behind a retaining wall. The post-construction behaviour of clay fills is complex with respect to stresses and deformation when the fills become saturated over time. Heavily compacted fills swells significantly more than the lightly compacted fills. This will produce enhanced lateral stresses if the fill is laterally restrained. The work presented in this paper examines how the stress regime in unsaturated clay fills changes with wetting under laterally restrained conditions. Specimens of compacted kaolin, with different initial conditions, were wetted to various values of suction under zero lateral strain at constant net overburden pressure which allowed the concept of K 0 (the ratio between the net horizontal stress and the net vertical stress) to be examined. Tests were also carried out to examine the traditional concept of the earth pressure coefficient ‘at rest' under loading and unloading and its likely effects on the stress–strain properties. The results have shown that the stress regime (i.e. the lateral stress) changes significantly during wetting under laterally restrained conditions. The magnitude of the change is affected by the initial condition of the soil. The results have also indicated that the earth pressure coefficient ‘at rest' during loading (under the normally consolidated condition) is unaffected by suction and such loading conditions inevitably lead to the development of anisotropic stress–strain properties